"This is a story about dynamics: about change, flow, and rhythm, mostly in things that are alive."
Arthur T. Winfree, "The Geometry of Biological Time", 1980.
Cátedras: Pablo Aguirre (pablo.aguirre [at] usm.cl)
Cátedras: Pablo Aguirre (pablo.aguirre [at] usm.cl)
Horarios de Clases: Por definir
Modalidad: Tutoría.
DESCRIPCIÓN DEL CURSO
La Biología Matemática es una de las áreas más excitantes y de mayor crecimiento de la Matemática Aplicada. Los sistemas biológicos son sistemas complejos y requieren el uso y comprensión de matemáticas sofisticadas, y de la interacción y comunicación entre biólogos, matemáticos y estadísticos. Ejemplos incluyen flujo sanguíneo en arterias, propagación de tumores, brotes y control de epidemias y enfermedades infecciosas, lecturas del ritmo cardíaco, conservación de especies en peligro, emergencia de patrones en el desarrollo y el crecimiento, etc. Por lo tanto, la investigación en Biología Matemática tiene la virtud de hallar rápidamente aplicaciones en el mundo real con un impacto positivo en la sociedad.
OBJETIVOS DEL CURSO
• Identificar modelos, herramientas, técnicas y conceptos matemáticos usualmente aplicados en modelación de fenómenos biológicos.
• Adquirir nuevas técnicas avanzadas de dinámica no lineal y aplicarlas en modelos descritos por EDOs y EDPs.
• Interpretar los resultados obtenidos y discutir las implicancias de las predicciones que se puedan hacer con ellos.
Para el final del curso, los estudiantes estarán familizarizados con:
(1) Las aplicaciones de modelos en la forma de EDOs en una variedad de sistemas biológicos;
(2) Ecuaciones de reacción-difusión y sus aplicaciones en biología;
(3) El uso de análisis de estabilidad lineal y no lineal para estudiar la dinámica de sistemas complejos;
(4) El enfoque de sistemas dinámicos para describir medios oscilatorios y excitables.
Requisitos: Este curso puede ser tomado por estudiantes matemáticos y no-matemáticos con conocimientos sólidos de teoría cualitativa de ecuaciones diferenciales ordinarias, cálculo diferencial e integral, y conocimientos de ecuaciones diferenciales parciales elementales.
Deseable pero no imprescindible: Nociones de sistemas dinámicos y teoría de bifurcaciones.
No es necesario haber estudiado biología para cursar exitosamente este ramo.
Contenidos:
1) Dinámica de poblaciones: Modelos para poblaciones aisladas. Sistemas depredador-presa. Modelos bien planteados: soluciones no-negativas y acotadas.
2) Enfermedades infecciosas: Modelos SIR, número básico de reproducción y brotes de epidemias, matriz de la próxima generación.
3) Oscilaciones de relajación: Propagación de impulsos nerviosos en neuronas, ecuaciones de Hodgkin-Huxley, modelo de Fitzhugh-Nagumo. Dinámica en distintas escalas de tiempo (sistemas slow-fast); teoría geométrica de perturbación singular.
4) Mecanismos de dispersión espacial: Convección, atracción y difusión. Ecuaciones de reacción-difusión. Ondas viajeras: pulsos viajeros, frentes de onda, ondas periódicas. Ecuación de Fisher-Kolgomorov. Estabilidad de ondas viajeras.
5) Formación de patrones: Inestabilidad de Turing, bifurcación de Turing. Morfogénesis (creación de formas y patrones espaciales).
Bibliografía
Apuntes del curso
- P. Aguirre, Modelos Biomatemáticos, 2021.
Textos recomendados en Biomatemática
- A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, 1998.
- F. Brauer & C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, 2nd edition, Springer, 2012.
- N. F. Britton, Essential Mathematical Biology, 2nd edition, Springer, 2003.
- L. Edelstein-Keshet, Mathematical Models in Biology, SIAM, 2005.
- E. Izhikevich, Dynamical Systems in Neuroscience. The Geometry of Excitability and Bursting, MIT Press, 2007.
- J. D. Murray, Mathematical Biology, 3rd. edition, Springer-Verlag, 2002.
Disponible en formato digital aquí: Volumen I, Volumen II.
- R. Smith?, Modelling Disease Ecology with Mathematics, 2nd. edition, AIMS, 2017.
- A. T. Winfree, The Geometry of Biological Time, 2nd. edition, Springer-Verlag, 2001.
Otros textos complementarios en Matemática
- D. W. Jordan & P. Smith, Nonlinear Ordinary Differential Equations, 4th Edition, Oxford University Press, 2007.
- C. Kuehn, Multiple Time Scale Dynamics, Springer, 2015.
- C. Kuehn, PDE Dynamics, SIAM, 2019.
- J. D. Meiss, Differential Dynamical Systems, Revised Edition, SIAM, 2017.
- L. Perko, Differential Equations and Dynamical Systems, Springer, 2001.
- S. Strogatz, Nonlinear Dynamics and Chaos, Westview Press, 2001.