



1

#### Estudio de las propiedades <u>fractales de árboles eléctricos</u> y de la <u>dinámica de las descargas parciales</u> involucradas en la degradación de aislamientos eléctricos

#### **Roger Schurch**

Departamento de Ingeniería Eléctrica

Presentación (adaptada) para asignatura Laboratorio de Modelación MAT-288 4 de abril de 2016

### **TEMA 1** Propiedades fractales de árboles eléctricos

#### **Overview**



- 1. Background
- 2. Experimental description
- 3. Examples of 3D geometrical models
- 4. Fractal dimension



#### 1. Background

- 2. Experimental description
- 3. Examples of 3D geometrical models
- 4. Fractal dimension

# **Electrical Trees**



- Tubular channels of degradation in HV polymeric insulation.
- Precursor to failure of electrical power equipment: bushings, cables, electrical machines and switchgear.
- Initiation and growth mechanisms are not fully understood.



220 kV



Ref.: http://www.bridgat.com/ Ref.: http://www.novinium.com/



# Crecimiento del árbol y falla



http://www.youtube.com/user/ElectricalTreesCEIDP/videos

## **Types of trees**



Bush-type

#### Branch-type



Scale bars: 200  $\mu m$ 

### **Types of trees (2)**



#### Conducting structure

#### Non-conducting structure



Scale bars: 200 µm

A. S. Vaughan, S. J. Dodd, and S. J. Sutton, *Journal Materials Science*, Vol. 39, pp. 181-191, 2004.



# Importance of studying Electrical Trees

- Study the mechanisms involved in the phenomena
- Lead to improved insulation design and asset management
  - → increase reliability of power networks
  - → achieve challenges of new requirements of plant compaction and energy loss reduction



# Traditional imaging approach: 2-D

• Optical microscopy





 Scanning Electron Microscopy (SEM)





• Complex interconnected structures require 3D approaches





#### 1. Background

#### 2. Experimental description

- 3. Examples of 3D geometrical models
- 4. Fractal dimension

# Methodology





Procedure of imaging and analysis of electrical trees

# **Experimental Procedure (1)**

TECNICA



- Material: epoxy resin
- Conventional point-to-plane configuration





• Tree growth: High voltage (~ 10 kVrms) AC 50 Hz







# **XCT Image Acquisition: Synchrotron**



- X-rays at synchrotron: high intensity and coherent
- Diamond Light Source synchrotron, UK.



Ref.: http://www.diamond.ac.uk/













- 1. Background
- 2. Experimental description

#### 3. Examples of 3D geometrical models

4. Fractal dimension



#### Algunos ejemplos de la data disponible



### Sample 1





#### Sample 2

#### XCT (Laboratory)

SBFSEM



#### Sample 3 (animation)







# La data disponible es una pila de imágenes 2D ya segmentadas



#### 1. Background

- 2. Experimental description
- 3. 3D geometrical model creation

#### 4. Fractal dimension



### **Fractales**

- Benoit Mandelbrot (1975)
- Estructuras geométricas que se repiten a sí mismo ("selfsimilarity" - autosimilar)
- Fractal matemático (curva de Koch) vs. fractal natural (línea costera, árboles, etc.)





# Árboles eléctricos y dimensión fractal

- Árboles eléctricos poseen estructura compleja que noes posible de describir analíticamente.
- La forma de los árboles eléctricos se describe a través de su dimensión fractal.
- Algunos modelos matemáticos de crecimiento de árboles eléctricos utilizan la dimensión fractal como uno de sus parámetros fundamentales.
- Árboles de dimensión fractal más pequeña crecen más rápido (son más peligrosos)

# Cálculo de la dimensión fractal

- Método de "box-counting": el espacio es cubierto con "N" cubos de arista "r".
- Se satisface relación

$$N_{(r)} \propto r^{-D_f}$$

donde Df es la dimensión fractal





## **Fractal dimension**

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA





# Algunas preguntas a investigar

- ¿Son los árboles eléctricos estructuras que podemos categorizar como fractales?
- ¿Es la dimensión fractal el mejor parámetro que caracteriza la forma de un árbol eléctrico?
- ¿Cuál es el mejor método para la estimación de la dimensión fractal en árboles eléctricos?
- ¿Cuál es la relación entre la dimensión fractal estimada desde una imagen 2D y la del objeto real 3D?
- ¿En qué error estaban incurriendo los investigadores al estimarla desde imágenes proyectadas 2D?



## Extra: Caracterización

### Bush vs. Branch



| Sample                                         | U1                   | U2                   | U3                   |  |  |
|------------------------------------------------|----------------------|----------------------|----------------------|--|--|
| Description                                    | Duch                 | Small                | Low density          |  |  |
| Description                                    | Bush                 | branch               | bush                 |  |  |
| Mean Diameter (µm)                             | 4.4                  | 2.0                  | 3.1                  |  |  |
| Volume/length ( $\mu m^2$ )                    | 4,672                | 27                   | 907                  |  |  |
| <sup>3D</sup> D <sub>f</sub> Fractal dimension | 2.23                 | 1.69                 | 1.94                 |  |  |
| Number of nodes                                | 5,040                | 78                   | 6,768                |  |  |
| Nodes/Length (µm <sup>-1</sup> )               | 13                   | 1                    | 9                    |  |  |
| Node density ( $\mu m^{-3}$ )                  | 2.8×10 <sup>-3</sup> | 4.8×10 <sup>-2</sup> | 1.0×10 <sup>-2</sup> |  |  |
| Mean Tortuosity                                | 1.6                  | 1.2                  | 2.5                  |  |  |



Number of channels slope: Bush-type: ~ 3-10 channels/μm Branch-type: < 1 channel/μm



#### **Extensive characterisation**

| Sample U1           |                                      |                      | U2                   |                      | <b>U3</b>            |                      | U4                               | T.ET.G               |                      |                      |                                |                                  |
|---------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------|----------------------|----------------------|----------------------|--------------------------------|----------------------------------|
|                     | Instrument                           | $micro-ACT_{(VI)}$   | SBFSEM_RI            | SBFSEM_R2            | micro-XCT (v2)       | SBFSEM               | micro-XCT <sup>(synchrot.)</sup> | $micro_X CT_{(V2)}$  | micro-XCT (v2-40X)   | Ist micro-XCT (V2)   | <sup>2</sup> nd micro-XCT (v2) | <sup>2</sup> -imp micro-XCT (12) |
| ameters             | Pixel size $(xy / z) (\mu m)$        | 1.07                 | 0.2/0.2              | 0.2/0.2              | 0.371                | 0.075/0.15           | 0.365                            | 0.4535               | 0.2322               | 0.4535               | 0.4535                         | 0.4509                           |
|                     | Slices used                          | 356                  | 1,273                | 1,567                | 160                  | 456                  | 2,300                            | 1,589                | 461                  | 176                  | 1,333                          | 1,434                            |
|                     | Length (µm)                          | 381                  | 255                  | 313                  | 59                   | 68                   | 839                              | 720                  | 107                  | 80                   | 605                            | 647                              |
|                     | Diameter (µm)                        | 4.4 (39%)            | 3.3 (45%)            | 4.5 (56%)            | 2.0 (18%)            | 1.0 (31%)            | 2.6 (37%)                        | 3.1 (38%)            | 1.2 (28%)            | 2.6 (38%)            | 3.7 (37%)                      | 2.5 (25%)                        |
| par                 | Surface area $(\mu m^2)$             | $1.70 \times 10^{6}$ |                      |                      | $3.50 \times 10^{3}$ | 4.56×10 <sup>3</sup> | 7.02×10 <sup>5</sup>             | $7.67 \times 10^5$   | 2.49×10 <sup>5</sup> | 4.29×10 <sup>4</sup> | $2.48 \times 10^{6}$           | 2.60×10 <sup>6</sup>             |
| Global <sub>J</sub> | Volume ( $\mu m^3$ )                 | $1.78 \times 10^{6}$ | 4.51×10 <sup>5</sup> | 3.94×10 <sup>6</sup> | $1.62 \times 10^{3}$ | 9.97×10 <sup>2</sup> | 4.96×10 <sup>5</sup>             | 6.53×10 <sup>5</sup> | 6.72×10 <sup>4</sup> | 2.50×10 <sup>4</sup> | $1.95 \times 10^{6}$           | 1.59×10 <sup>6</sup>             |
|                     | Conv. hull volume (µm <sup>3</sup> ) | 5.06×10 <sup>7</sup> | 7.41×10 <sup>7</sup> | 1.09×10 <sup>8</sup> | 5.62×10 <sup>4</sup> | 7.26×10 <sup>4</sup> | 5.48×10 <sup>8</sup>             | 2.25×10 <sup>8</sup> | 5.68×10 <sup>5</sup> | 1.67×10 <sup>5</sup> | 7.83×10 <sup>7</sup>           | 1.03×10 <sup>8</sup>             |
|                     | Surface/Volume (µm <sup>-1</sup> )   | 0.95                 |                      |                      | 2.16                 | 4.57                 | 1.42                             | 1.18                 | 3.70                 | 1.72                 | 1.27                           | 1.64                             |
|                     | Volume/length ( $\mu m^2$ )          | 4,672                | 1,769                | 12,588               | 27                   | 15                   | 591                              | 907                  | 628                  | 313                  | 3,227                          | 2,453                            |
|                     | Prop. volume degraded                | 3.5%                 | 0.6%                 | 3.6%                 | 2.9%                 | 1.4%                 | 0.1%                             | 0.3%                 | 11.8%                | 14.9%                | 2.5%                           | 1.5%                             |
| I                   | <sup>3D</sup> D <sub>f</sub>         | 2.23                 |                      |                      | 1.69                 | 1.84                 | 1.80                             | 1.94                 | 2.33                 | 2.12                 | 2.18                           | 2.16                             |
| acta                | $xy^{2D}D_{f}$                       | 1.83                 |                      |                      | 1.40                 | 1.54                 | 1.62                             | 1.72                 | 1.72                 | 1.61                 | 1.75                           | 1.76                             |
| Ηr                  | xz <sup>2D</sup> D <sub>f</sub>      | 1.83                 |                      |                      | 1.42                 | 1.58                 | 1.66                             | 1.75                 | 1.73                 | 1.58                 | 1.76                           | 1.79                             |
|                     | $yz \ ^{2D}D_{f}$                    | 1.86                 |                      |                      | 1.50                 | 1.56                 | 1.68                             | 1.74                 | 1.78                 | 1.62                 | 1.74                           | 1.80                             |
| Skeleton            | Number of nodes                      | 5,040                |                      |                      | 78                   | 504                  |                                  | 6,768                | 28,967               | 927                  | 21,121                         | 23,028                           |
|                     | Number of segments                   | 6,191                |                      |                      | 78                   | 510                  |                                  | 6,908                | 38,792               | 1,294                | 21,051                         | 29,431                           |
|                     | End point fraction                   | 0.2                  |                      |                      | 0.5                  | 0.5                  |                                  | 0.4                  | 0.1                  | 0.2                  | 0.3                            | 0.3                              |
|                     | Node degree                          | 3.2 (16%)            |                      |                      | 3.2 (12%)            | 3.1 (11%)            |                                  | 3.1 (9%)             | 3.4 (22%)            | 3.3 (20%)            | 3.1 (11%)                      | 3.1 (10%)                        |
|                     | Segment length (µm)                  | 17.3 (93%)           |                      |                      | 7.3 (60%)            | 3.0 (63%)            |                                  | 11.7 (118%)          | 2.3 (63%)            | 5.1 (60%)            | 8.8 (94%)                      | 12.7 (86%)                       |
|                     | Tortuosity                           | 1.6 (37%)            |                      |                      | 1.2 (6%)             | 1.2 (7%)             |                                  | 2.5 (38%)            | 1.5 (6%)             | 1.6 (11%)            | 1.6 (13%)                      | 1.5 (12%)                        |
|                     | Branch angle (deg)                   | 64 (47%)             |                      |                      | 69 (39%)             | 57 (48%)             |                                  | 63 (49%)             | 69 (46%)             | 67 (43%)             | 64 (47%)                       | 60 (45%)                         |
|                     | Node density ( $\mu m^{-3}$ )        | 2.8×10 <sup>-3</sup> |                      |                      | 4.8×10 <sup>-2</sup> | 5.1×10 <sup>-1</sup> |                                  | 1.0×10 <sup>-2</sup> | 4.3×10 <sup>-1</sup> | 3.7×10 <sup>-2</sup> | 1.1×10 <sup>-2</sup>           | 1.5×10 <sup>-2</sup>             |
|                     | Seg. length/diameter                 | 3.9                  |                      |                      | 3.7                  | 3.1                  |                                  | 3.8                  | 1.9                  | 2.0                  | 2.4                            | 5.0                              |

### **TEMA 2** La dinámica de las descargas parciales



## **Descargas parciales (DP)**





### Equipamiento de potencia









### Árbol eléctrico y descarga parcial





## Las DP se pueden medir...



• Partial Discharge test circuit according standard IEC 60270



• Electric detection of the PD current pulse.



# Análisis tradicional de DP

- PD process: stochastic phenomenon
- Analysis: statistics



Superimposition problem

Phase resolved plot

#### Disadvantage

• Does not consider the dynamics in the PD process

# Análisis alternativo (propuesto)

- Proceso DP: Sistema dinámico no lineal, princ. determinístico
- Análisis: series de tiempo no lineal & teoría del chaos





UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

#### Input-Output model



# Data disponible

- PD data resolved in time
- Acquire for each discharge: time, PD magnitude, instantaneous voltage and phase angle of the applied voltage.





# Trasfondo teórico (1): Trayectorias

Analysing the system dynamics → phase-space representation

("trajectory")

Reconstruction of the phase-space → one observable variable

delay coordinate embedding

**Selection of:** 

1. Variable

2. Embedding parameters

Dimension

Delay



# Trasfondo teórico (2): Trayectorias

• Example: Lorenz attractor reconstructed from a time series



3. Reconstructed trajectory x(t), x(t-T), x(t-2T)



# **Objetivos del estudio**

**GRAL:** Estudiar el comportamiento dinámico de las DP

- Relacionar defectos de DP con patrones de DP
- Evaluar la potencialidad del método propuesto
- Evaluar la capacidad del método para:
  - Identificar fuentes de DP simultáneas
  - usarlo para el diagnóstico del envejecimiento del aislamiento eléctrico

# Metodología







#### **Caso estudio 1**

#### Trajectories for different test objects





### **Caso estudio 2**

#### Trajectories for different frequencies of the applied voltage



**Excitation: 0.1 & 500Hz sinus.** Test object: point-to-plane Variable: ISI Delay: 2



### Caso estudio 2 (cont.)

#### Sensitivity to embedding parameter: delay



Excitation: 500Hz sinusoidal Test object: point-to-plane Variable: ISI **Delay: 4 & 81** 



## Algunos temas a tratar

- Analizar si el proceso de DP es un sistema dinámico de carácter determinístico-caótico.
- Explotar las herramientas de análisis de la teoría de sistemas dinámicos no lineales, para identificar patrones de DP que informen sobre el tipo de defecto.
- Explorar la caracterización de patrones a través de trayectorias.
- Proponer el enfoque del análisis del proceso que permita mejorar el conocimiento de las DP y por ende, mejore el diagnóstico del estado del aislamiento eléctrico.





#### Gracias por su atención





#### **Extra slides**

## Moulds for sample preparation





# Image Acquisition (2): SBFSEM







#### Agglomeration nano filled 3 wt% samples







#### Slices of electrical tree channels in nano filled 3 wt% sample





#### **Characterisation of 3D electrical trees**



#### **Preparation for imaging**





### End

