

Dependencia de un parámetro regulador de la depredación en un modelo tritrófico

Viviana Rivera Estay vivianarivera.mate@gmail.com

Proyecto para MAT-282 Laboratorio de Modelamiento I

26 de Agosto 2016, Valparaíso, Chile.

• □ ▶ < 同 ▶ < 三</p>

Motivación

Estudiar la dependecia de un parámetro en la dinámica de un modelo tritrófico. Cuyo parámetro regula la depredación de una especie como alimento de otra especie.

Conocimientos previos

- Teoría de dinámica poblacional.
- Teoría de Sistemas Dinámicos.
- Teoría cualitativa de ecuaciones diferenciales.
- Teoría de Bifurcaciones.
- Conocimientos básicos de integración y continuación numérica.
- Conocimientos básicos de **Matcont**, Matlab.

Requisitos

(日)、

- Tener instalado MatCont en su computadora.
- Ganas de aprender y trabajar.

Un modelo tritrófico

$$X_{\mu} = \begin{cases} \dot{x} = rx\left(1 - \frac{x}{k}\right) - \left(\frac{qx^{\alpha}}{x^{\alpha} + a}\right)y - d_{1}xz, \\ \dot{y} = sy\left(1 - \frac{y}{nx}\right) - d_{2}yz, \\ \dot{z} = hz\left(1 - \frac{z}{c_{1}x + c_{2}y}\right), \end{cases}$$
(1)

•
$$x = x(t)$$
 presa de las especies $z \in y$.

- y = y(t) presa de la especie z y depredador específico de la especie x.
- z = z(t) depredador generalista.
- $\mu = (r, k, q, a, d_1, s, n, d_2, h, c_1, c_2, \alpha) \in \mathbb{R}^{11}_+ \times]0, 1[.$
- Dominio: $\Omega = \{(x, y, z) \in \mathbb{R}^3 | x > 0, y \ge 0, z \ge 0\}.$

Reeparametrización y reescalamiento del tiempo

Teorema

El campo vectorial (1) es topológicamente equivalente al sistema (2) en Ω y es una extensión continua a $\overline{\Omega} = \{(u, v, w) \in \mathbb{R}^3 | u \ge 0, v \ge 0, w \ge 0\},$

$$X_{\eta} = \begin{cases} \dot{u} = u(C_{1}u + C_{2}v) \left(u(1-u) \left(u^{\alpha} + A \right) - Qu^{\alpha}v - D_{1}u \left(u^{\alpha} + A \right) w \right), \\ \dot{v} = S(u-v) \left(u^{\alpha} + A \right) \left(C_{1}u + C_{2}v \right)v - D_{2}uvw \left(u^{\alpha} + A \right) \left(C_{1}u + C_{2}v \right), \\ \dot{w} = Huw \left(C_{1}u + C_{2}v - w \right) \left(u^{\alpha} + A \right), \end{cases}$$
(2)

donde $\eta = (A, Q, S, H, C_1, C_2, D_1, D_2, \alpha) \in \Lambda = \mathbb{R}^8_+ \times]0, 1[.$

Los siguientes **resultados analíticos** se obtuvieron en el trabajo de tesis

"Dinámica de un modelo tritrófico con respuesta funcional no-diferenciable".

- El modelo tiene unicidad de soluciones.
- El equilibrio (1,0,0) es de tipo silla.
- El equilibrio $\left(\frac{1}{1+C_1D_1}, 0, \frac{C_1}{1+C_1D_1}\right)$ puede ser un atractor o repulsor.
- El equilibrio (m, m, 0) puede ser un repulsor o un punto silla.
- El equilibrio (m, m, 0) exhibe una bifurcación de Hopf.

Dinámica en el interior del primer octante

Se estudio la dinámica del modelo en el espacio de parámetros (Q, S) fijando el resto de los parámetros en los siguientes valores:

Figura : Retratos de fase del sistema (2). En (a) para $(Q, S) \in \mathbf{1.a}$. En (b) para $(Q, S) \in \mathbf{2.a}$.

Figura : Retratos de fase del sistema (2). En (a) para $(Q, S) \in \mathbf{2.a}$. En (b) para $(Q, S) \in \mathbf{2.b}$.

Figura : Retratos de fase del sistema (2). En (a) para $(Q, S) \in \mathbf{2.b}$. En (b) para $(Q, S) \in \mathbf{1.b}$.

Figura : Retratos de fase del sistema (2). En (a) para $(Q, S) \in \mathbf{1.b}$. En (b) para $(Q, S) \in \mathbf{4.c}$.

Figura : Retratos de fase del sistema (2). En (a) para $(Q, S) \in 4.c.$ En (b) para $(Q, S) \in 3.a.$

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figura : Retratos de fase del sistema (2). En (a) para $(Q, S) \in \mathbf{3.a}$. En (b) para $(Q, S) \in \mathbf{4.a}$.

Figura : Retratos de fase del sistema (2). En (a) para $(Q, S) \in 4.a$. En (b) para $(Q, S) \in 1.a$.

Objetivos

- Construir diagramas de bifurcación para distintos valores del parámetro α ∈]0, 1[.
- Determinar la influencia de este parámetro en el modelo.

Apéndice

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

http://www.matehipermaticas.cl

Referencias

- E. SÁEZ AND E. GONZÁLEZ-OLIVARES, *Dynamics on a predator-prey* model, SIAM Journal of Applied Mathematics 59, 1999.
 - P. TURCHIN, Complex population dynamics. A theoretical/empirical synthesis, Mongraphs in Population Biology 35, Princeton University Press, 2003.
- Y. KUZNETSOV, Elements of Applied Bifurcation Theory Second Edition, Springer.
- J. GUCKENHEIMER, P. HOLMES, Nonlinear Oscillations, Dynamical Systems and Beifurcation of Vector Fields. Second Edition, 1985.
- B. DENG, Equilibriumizing all food chain through reproductive efficiency, CHAOS, 2006
- E. SÁEZ, E. STANGE, E. GONZÁLEZ-OLIVARES AND M. FALCONI, Chaotic dynamics and coexistence in a three species interaction model, International Journal of Biomathematics, 2015

GRACIAS

(日)

