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Major Cooperation Research Fields with
Ivan

e Joint Research Field 1:
Limit Cycles

e Joint Research Field 2:
Hemivariational Inequalities

e Joint Research Field 3:
Fractional Calculus




Joint Publications on Limit Cycles

Introduction
Existence for. ..

Complete. ..

e L1U ZH, SAEZ E, SZANTO 1., A system of degree four with an invariant Approximate...

Optimal control for. ..
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e L1U ZH, SAEZ E.,SZANTO 1., A cubic system with an invariant triangle
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Joint Publications on Hemivariational
Inequalities

e LIU ZH, SZANTO I., Inverse coefficient problems for

parabolic hemivariational inequalities, Acta Mathematica
Scientia, 2011,31B(4):1318 - 1326.

e L1U ZH, SZANTO 1., Multivalued differential equations

in Banach spaces and their applications, Acta Mathemat-
ica Scientia, 22(2), 2002, 213-221.
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1 Introduction

e What is fractional calculus?

In a letter to Leibniz in 1695 L’Hopital raised the following
question: ”Can the meaning of derivatives with integer or-

der be generalized to derivatives with non-integer orders?”

What if the
order will be

n = %7

It will lead to a
paradox, from which
one day useful
consequences will be
drawn.

G.F.A. de L'Hopital | G.W. Leibniz
(1661-1704) (1646-1716)

Introduction
Existence for. ..
Complete. ..
Approximate. ..
Optimal control for. ..

Open Problems

Home Page

i

Title Page

Law]

4 | | 2 |
Page 8 of 38 |
Go Back |
Full Screen |
Close |
Quit |



Many famous mathematicians made great contributions to
fractional calculus

@ L. Euler;

© PS. Laplace,

@ J.B.J. Fourier,

© N.H. Abel,

@ J. Liouville,

@ B. Riemann,

© A. K. Grunwald,
© A. V. Letnikov,
@ H. Weyl,

&...
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Fractional Integral

e Riemann (1847):
I f(t) = ﬁfo (t —s)* tf(s)ds, a>0, (1.1)

is called Riemann-Liouville fractional integral of order

«, where 1 is the gamma function.

o If o is an integer, then (1.1) is the general integer-order

integral with the order «.




Definitions of Fractional Derivatives

e  Riemann-Liouville Fractional Derivatives: —
Existence for. ..
. . . . Complete. ..
For a function f(t) given in the interval |0, c0), the prleiig)
: pon Pt
expression
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of number o, is called the Riemann-Liouville frac-



Caputo Fractional Derivatives:
For the function f(t) € C"0,00), f : [0,00) — R as

D) = s [ (= s, (1)

where t > 0,n = |a] + 1, [a] denotes the integer part of

real number .

The Relationship between the two definitions

D) = By (10 - X [0,




2 Existence for Fractional Differential
Systems

2.1 Existence for Caputo Fractional Evolution System

‘Dix(t) = Ax(t) + f(t,x(t)),t € J =10, b], 2.1)
z(0)=xy, O0<a<l |
e D3 is the Caputo fractional derivative of order o with the

lower limit zero.

e A is the infinitesimal generator of an analytic semigroup

{T'(t),t > 0} on a Banach space X.




Assumptions
e H(1): T(t) is a compact operator for every t > (),

e H(2) : There exist a function ¢(-) € LP(J,RT), p > é

and a constants ¢ > 0, such that

| f(t, z)|| < o(t)+c|x|x, foraete J andallz € X.

e H(3) : There exists a constant L > ( such that

Lf(t2) = it y)ll < Llle —yllx, forallz, y € X.




[ Liu ZH, Lv JY, Comp. Math. Appl., 62 (2012) 1063-1077]

Theorem 2.1 Assume that the hypotheses H(1) — H(3) are

satisfied. Then the system (2.1) exits a mild solution on J.




The ideas of the proof. If o = 1, the mild solution can be

written as:

x(t) =T (t)xy + /0 T(t—s)f(s,x(s)ds,

where T(t) = e

By an iterative method, we show the mild solution of system
(2.1) has the following form.:

x(t) = Sa(t)xo + /0 RN (t — s) f(s, z(s)ds




where

/ L OT(0)00, To0) = o [ v,(0)T(0)a0.

1 1
§a(0) = 5‘9 (+g )Wa(‘g_a) > 0,
l o r 1
Wa(0) = — Z(—l)”_lﬁ_”o‘_l (ni'+ >sin(n7roz), 6 € (0, 00),
n=1 |

&, is a probability density function defined on (0, 00), that is

£.(0) >0, 0 € (0,00) and /OO £.(0)do = 1.
0




2.2 Existence for Riemann-Liouville Fractional

System

"Dix(t) = Ax(t) + f(t,2(1), t€ J, 0< g <1,
L7 ()] im0 = 20 € X,
(2.2)

e LD is the Riemann-Liouville fractional derivative of or-
der q.
ll—
® L)+ "2(t) =0 = lime—0 grr— T(1—q) fo z(s)ds

e This kind of initial conditions has a definite physical

meaning and memory effects.




Assumptions

e H(1) : T(t) is a Cy—semigroup and T'(t) is continuous in
the uniform operator topology for t > 0.

e H(2) : There exist a function ¢(-) € LP(J,R"), p > é

and a constants ¢ > 0, such that

1£(t, )| < o(t)+ct' | z||x, foraete J andallz € X.

e H(3) : There exists a constant L > ( such that

Lf(t2) = it y)ll < Llle —yllx, forallz, y € X.




[2013 Liu ZH, Commun. Nonlinear Sci. Numer. Simulat, 18 1362-1373]

[2013 Liu ZH, Sun JH, Szanto 1.,Results. Math. 63, 1277 - 1287]
Theorem 2.2 Assume that the hypotheses
H(1) — H(3) are satisfied. Then the system

(2.2) exits a mild solution on J.




The ideas of proof

Key: Define a new Banach space as:
@h (J X) = {z: ' %) EC el

with the norm ||z||c,_. = sup{t'~¢||z(¢)||x : t € J}.
The solution of (2.2) can be written as

x(t) = to‘_lTa(t):coJr/Ot(t—s)o‘_lTa(t—s)f(s, x(s))ds, t € J.




where

T.() = o /0 " 06, ()T (1°0)db,

and 1
al6) =~ (670) 2 0,
] — r 1
wa(f) = - ;::1(—1)"_19_"0‘_1 (ni!+ >sin(n7rcu), 0 € (0,00),

&, is a probability density function defined on (0, 00), that is

£.(0) >0, 0 € (0,00) and /OO £.(0)do = 1.
0




3 Complete Controllability

The concept of controllability, when it was
first introduced by Kalman in 1960, has been
widely studied by many authors. Generally
speaking, the significant meaning of the con-
trollability lies on the fact that it can steer a
dynamic control system from an arbitrary ini-
tial state to arbitrary final state using the set
of admissible controls, and it plays an impor-

tant role in deterministic and stochastic con-

trol theory and engineering.

Kalman




Consider the following fractional differential evolution inclu-

sion systems.:

{ ‘Dex(t) € Ax(t) + Bult) + F(t, z(t)), a.1)

z(0) = xo,t € J =0, b].
o The state x(-) takes values in X, the control function u(-)

takes its value in L%(J, U)(p > 1) of admissible control
functions for a Banach space U, B : U — X is a bounded

linear operator.

o [': J XX = Poyep(X).




e Definition 3.1 (Complete controllability) The fractional
system (3.1) is said to be completely controllable on the
interval J, iff for every xy,x; € X, there exists a control
u € L%(J, U) such that a mild solution x(t) to system

(3.1) satisfies x(b) = x.




Assumptions:

e H(1) T'(t)(t > 0) is a strongly continuous semigroup on
X.
e H(2) The linear operator W Lzl?(], U) — X, defined by
b
Wu = / (b — 8)* 1T, (b — s)Bu(s)ds,
0

has an inverse operator W' which takes value in
1

Lr(J,U)/kerW and there exist two positive constants

My, M3 > 0 such that | B|| < My, and |[W™Y| < Ms.
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e H(3) For all bounded subsets B,, the set
t—e poo
£,0 _ . AT |
[15°(¢) {Sa(t) (xg — h(0,z0)) + oz/o /5 0t — s)
XEL(NT((t —5)0)f(s)dOds : = € Br}

is relatively compact on C(J, X) for arbitrary ¢ > 0,t €
(0, 0] and any § > 0.




[2013 Liu ZH, Li XW, J. Optim. Theory Appl. 156(2013) 167-182.]
Theorem 3.1 Assume that the hypotheses H(1) — H(3) are

satisfied. Then the system (3.1) is completely controllable on




Proof. If x(0) = x¢ and there exists f € F(t,x(t)) a.e. on J,

then the mild solution of system (3.1) can be written as

z(t) = So(t)(xg— h(0,20)) + h(t, z(t))

+ [ (t—8)* TAT,(t — s)h(s,z(s))ds

R
o

(t — 5)° "M (t — s) [f(s)+Bu(s)] ds (3.2)




Mo ey g e i Sl v @orasl i 65
wa(t) = W‘l{xl _ Su(b) (o — h(0, o))

_ /0 (b= 51V — 8 (s)ds

_ /O (b s AT (b — s)h(s m(s))ds}(t), e




4 Approximate Controllability

For Caputo fractional differential evolution inclutions

‘Dig(t) € Az(t) + Bu(t) + F(t,z(t)), 3 < ¢ <1, te J=[0,b],
w0 =
(4.1)
o The state x(-) takes values in X, the control function u(-) is given in
L*(J,U), admissible control functions with U a real Hilbert space,

B : U — X is a bounded linear operator.

o 1 Jx X — P(X) :=2X\ {0} is a multivalued map.




Recall the definitions:
X (b, o) = {x(b;u);u € L*(J,U), z(0;u) = x0}
is called the reachable set of system (4.1) with the initial

value x at terminal time b.

e The system (4.1) is said to be approximate controllability

on the interval J if for all xy € X we have Z (b, xy) = X.

e The system (4.1) is said to be complete controllable on J,
if for all xy € X we have Z(b, xy) = X,

i.e., there exists u € L*(J,U) such that the mild solution
of (4.1) satisfies x(0; u) = xg, x(b;u) = 1.




Hypotheses

(Hy): T'(t) is a compact Cy-semigroup.
(H2): F is a multivalued map satisfying F : J x X — Py (X)) is
measurable to t for each fixed x € X, u.s.c. to x for a.e. t € J, and for

each v € C(J X) the set
Spa = (f € LNJ,X) - f(t) € F(t,2)}

LS nonempty.
(Hs): There exists a positive constant L and a bounded nonnegative
measurable function ¢ such that |F(t,z)|| < ¢(t) + L||x|| for all

(t, z) € J x X.




Result

[2013, Liu ZH, Lv JY, R. Sakthivel], IMA J. Math. Control Inf. (2013)]
Theorem 4.1 Assume that assumptions (H) — (Hj) are satisfied, and
the linear system corresponding to (4.1) is approximately controllable

on J. Then system (4.1) is approximately controllable on J.




5 Optimal feedback control problems

We consider the following problem:
inf () = { /0 ) L(t,:z:(t),u(t))dt}
subject to
{ LDIx(t) = Ax(t) + f(t, z(t),u(t)), t€[0,T], 0 < q <1,

u(t) € U(t, t192(t)), ae.t €]0,T],
Iov “x(t)|e=0 = x0 € X,




o f:0,T] x X xV — X is given function to be specified
later.
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e The control function u is given in a suitable admissible Complet...

Approximate. ..

control set U. But U : [0,T] x X — K(V), V is a sepa- Optimatconvor ..
rable Banach space.

[2013 Liu ZH, Journal of Differential Equations, Ac- —
cepted. ] e rage |
Law]

Theorem 5.1. Assume that the hypotheses H(1) — ]|

H(7),H(L), H(¢e) hold. Then Lagrange problem (P) | Eoi |

admits at least one optimal control pair. sl
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