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Abstract.

We show how a suitable parametrization technique can help in the nu-
merical -analytic method based upon successive approximations for the
investigation of solutions of non-linear boundary value problems with
“inconvenient ” boundary conditions defined by singular matrices, by
integral terms or by nonlinear two-point restrictions.
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Introduction.

Motivation of the interest to the theory of boundary value problems
(BVPs) :

-wide application

-many unsolved (or partially solved) problems.
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In this lecture I am going to speak about the BVPs only in the case of
ODEs.

Various classes of BVPs are defined by :

-the type and the form of the given DE and

-the type of the boundary conditions.
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In the theory of BVPs one distinguish :

-Linear BVPs

-Nonlinear BVPs.
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General form of linear BVP:

dx
dt

= A(t)x + f (t), t ∈ [0,T] ,

l(x) = 0,

where
A ∈ C([0,T]→ Rn×n), f ∈ C([0,T]→ Rn),

Linear functional l : C1(0,T)→ Rn.
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Special cases.

Two-point linear BVP:

dx
dt

= A(t)x + f (t), t ∈ [0,T] ,

B0x (0) + B1x (T) = d, B0,B1 ∈ Rn×n, d ∈ Rn.

Multipoint linear BVP :

dx
dt

= A(t)x + f (t), t ∈ [0,T] ,

m∑
j=0

Bjx
(
τj
)

= d, Bj ∈ Rn×n, d ∈ Rn, 0 = τ0 < τ1 < ... < τm = T
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Linear BVPs theoretically can be reduced to the equivalent initial value
problem:

dx
dt

= A(t)x + f (t), t ∈ [0,T] ,

x (0) = x0, x0 =?

By using

x (t, 0, x0) = X(t)X−1(0)x0 + X(t)

t∫
0

X−1(s)f (s)ds,
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In the case of multipoint linear BVP we obtain the linear algebraic sys-
tem : B0 +

m∑
j=1

BjX
(
τj
) x0 = d−

m∑
j=1

BjX
(
τj
) τj∫

0

X−1(s)f (s)ds,

If

det

B0 +

m∑
j=1

BjX
(
τj
) 6= 0, we obtain x0.
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Generalization for non-linear Cauchy problem.

Using the ”shift” or ”translation operator”
M.A.Krasnosel’skij , M., (1966,333p.) ”Translation operators....”

dx
dt

= f (t, x) , x(0) = x0, (t, x) ∈ (−∞,∞)×D, D ⊂ Rn

If ∃! Solution with x0 ∈ DH ⊂ D:

x(t) = x(t, 0, x0),

”Using the ”shift” operator U(τ, 0, x0) we can write :

x(τ) = U(τ, 0, x0)x0.
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For example, in the case of T− periodic solutions and T− periodic bound-
ary conditions:

x(0) = x(T),

for finding the initial value x0 corresponding to the T− periodic solu-
tion we should solve the following operator equation:

x0 = U(T, 0, x0)x0.

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 15
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By Newton method:[
I −U

′
(T, 0, x(k)

0 )
]

∆x(k)
0 = x(k)

0 − x(k)(T),

x(k+1)
0 = x(k)

0 + ∆x(k)
0 , k = 0, 1, ...

where U′
(T, 0, x(k)

0 ) is a Frechet derivative of the ”shift” operator
U(T, 0, x(k)

0 ) at the point x(k)
0 and x(k)(t) is a solution of the following

initial value problem

dx
dt

= f (t, x) , x(0) = x(k)
0 ,

i.e.
x(k)(t) = U(t, 0, x(k)

0 )x(k)
0 .
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It is known, that
U

′
(T, 0, x(k)

0 ) = X(T, x(k)
0 ),

where
X(T, x(k)

0 )

is a normal fundamental matrix at the point t = T of the linear system
of DEs:

dx
dt

= A(k)(t)x,

where

A(k)(t) =

(
∂f (t, x(k)(t))

∂x

)
is a Jacobi matrix for x = x(k)(t).
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Nonlinear BVPs.

We will study now various type BVPs for the nonlinear system of dif-
ferential equations using some so called numerical-analytic techniques
based on successive approximations :

dx
dt

= f (t, x) , (1)

where
f : [0,T]×D→ Rn,

D ⊂ Rn is a closed bounded domain.
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Various types of boundary conditions :

Linear not separated :

Ax (0) + Cx(T) = d, A,C ∈ Rn×n, d ∈ Rn,

det C 6= 0 or det C = 0,

Ax (0) + A1x(t1) + A2(t)x(t2) + ...Apx(tp) + Cx(T) = d,

0 < t1 < t2 < ... < tp < T.

Non-linear conditions:

g (x (0) , x (T)) = 0, g : D×D→ Rn,

g
(
x (0) , x(t1), x(t1), ..., x(tp), x (T)

)
= 0.

Cauchy-Nicoletti conditions:

xi(ti) = di, i =, 2, ...,n,

0 = t1 ≤ t2 ≤ ... ≤ tn = T.
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Example.

n = 3

x1(t1) = h1, x2(t2) = h2, x3(t3) = h3, 1 0 0
0 0 0
0 0 0

 x1(0)
x2(0)
x3(0)

+

 0 0 0
0 1 0
0 0 0

 x1(t2)
x2(t2)
x3(t2)

+

+

 0 0 0
0 0 0
0 0 1

 x1(T)
x2(T)
x3(T)

 =

 h1
h2
h3

 .
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Interpolation type conditions (Valle- Poisson condition):
xj(ti) = di, i = 1, 2, ...,n, j ∈ {1, 2, ...,n} , 0 = t1 < t2 < ...tn = T.

Example n = 5,

x1(t1) = d1, x1(t2) = d2, x2(t3) = d3, x3(t4) = d4, x3(t5) = d5.

Integral boundary conditions :

Ax(0) +

T∫
0

B(s)x(s)ds + Cx(T) = d,

g

x(0),

T∫
0

B(s)x(s)ds, x(T)

 = d.
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Problem setting:

The problem is to find the solution of the system of DEs (1) satisfying some
one of above mentioned boundary conditions in a class of continuously differ-
entiable functions :

x : [0,T]→ D, x ∈ C1([0,T] ,Rn).
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The analysis of the literature, devoted to the theory of non-linear bound-
ary values problems, shows that various, so-called:

-analytic

- functional-analytic, (according to M.Farkas : perturbations methods)

- numerical and

- numerical-analytic methods based upon successive approximations

are now extensively studied.

Naturally, each group of methods has certain advantages and disad-
vantages.
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The analytic methods in the theory of boundary value problems are gen-
erally used for qualitative investigation (existence, uniqueness, stabil-
ity, dichotomy, reducibility, branching). See, e.g., [1, 2, 4, 5, 6, 7] and
also the references in [8].

The group of functional-analytic methods for obtaining existence results
widely uses the techniques of functional analysis, topological degree
and the theory of approximate methods for solving operator equations
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18],[19], [20].

The group of numerical methods under the assumption of the existence
of solutions gives practical numerical algorithms for approximate con-
struction of solutions of given boundary-value problems [21, 22].
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Note that numerical construction of approximate solutions is usually
based on the idea of shooting method and may face certain difficulties
because the regularity conditions for the right- hand side function , e.g.
the Lipschitz condition, as a rule should be assumed globally, i.e. ful-
filled for all the values of space variables in Rn , which is quite often not
the case.

Therefore, using the numerical methods a rigorous investigation of the
solutions of boundary value problems tends to avoid the case when
the range of the solution is restricted to a certain given bounded closed
domain D ⊂ Rn.

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 25
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Example.

Let us consider the Cauchy problem

dx
dt

= x2 = f (t, x),

x(t0) = x0 6= 0.

Obviously, the right hand side function satisfy the Lipschitz condition
only locally.
The solution of the initial value problem

x(t) = − 1
t− ( 1

x0
+ t0)

exists only on the interval
[
t0, t0 + 1

x0

)
.

Therefore, even the boundary value problem setting on the interval
[t0,T] is impossible, when

T > t0 +
1
x0
.
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We understand under the numerical-analytic methods the methods which
enable one to represent the required solution in an analytic form, al-
though some of its parameters or coefficients should be determined nu-
merically by solving the system of algebraic or transcendental equation.

Among the numerical-analytic methods we share out those which are
based upon successive approximations and for which the dimension
of the appearing system of algebraic or transcendental equations coin-
cides with the dimension of the given system of differential equations.
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In the theory of nonlinear oscillations such types of numerical-analytic
methods based upon successive approximations were apparently first
developed by L. Cesari [23], J. Hale [12], and A. M. Samoilenko [24, 25].

The last approach was developed successfully later for general types of
boundary-value problems in the books [26, 27, 28] and, e.g., the papers
[29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 51, 52, 53, 54],
[45], [46], [47], [50],[48],[49],[63],[67],[62],[65],[66],[64],[68].
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Methods of the numerical-analytic type, in s sence, combine, advantages
of the mentioned above approaches and are usually based upon certain
iteration processes constructed explicity in analytic form.

Such an approach belongs to the few of them that offer constructive
possibilities both for the investigation of the existence of solution and it
approximate construction.
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For a boundary value problem, the numerical-analytic approach usu-
ally replaces the problem by the Cauchy problem for a suitably per-
turbed system containing some artificially introduced vector parameter
z, which most often has the meaning of the initial value of the solution
and the numerical value of which is to be determined later.

The solution of the Cauchy problem for the perturbed system is sought
for in analytic form by successive approximations.

The functional ”perturbation term”, by which the modified equation
differs from the original one, depends explicitly on the parameter z and
generates a system of algebraic or transcendental ”determining equa-
tions” from which the numerical values of z should be found.
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The solvability of the determining system, in turn, may be checked by
studying some approximations that constructed explicitly.

It is clear that the complexity of the given equations and boundary con-
ditions has an essential influence both on the possibility of an efficient
construction of approximate solutions and the subsequent solvability
analysis.

The aim of this lecture to show how a suitable parametrization tech-
nique can simplify the using of some numerical -analytic techniques
when dealing with ”inconvenient” linear boundary conditions deter-
mined by singular matrices or when the given two-point restrictions
are nonlinear.
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Two-point non-linear BVP with linear boundary
conditions.

Let us consider in more detail the following nonlinear BVP, when for
the sake of simplicity the linear boundary conditions are given in the
usual matrix-vector form
dx
dt

= f (t, x) , f : [0,T]×D→ Rn, D ⊂ Rn is a closed bounded domain,
(2)

Ax (0) + Cx(T) = d, A,C ∈ Rn×n, d ∈ Rn,det C 6= 0, (3)

where the function
f : [0,T]×D→ Rn

is continuous .

The problem is to find the solution of BVP (2), (3) in the class of contin-
uously differentiable functions

x : [0,T]→ D, x ∈ C1([0,T] ,Rn),
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Remark 1.

We note that from (3) when A = I , C = −I and d = 0, we obtain the periodic
boundary conditions

x(0) = x(T).
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For the given function f we define the vectors

δD(f ) :=
1
2

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
, β =

T
2
δD(f ) (4)

and for any non-negative vector r ∈ Rn we understand

B(u, r) := {ξ ∈ Rn : |ξ − u| ≤ r}

as the r−neighbourhood of the u ∈ Rn.

In equality (4) and in similar relations presented in what follows, the
operations max,min and the signs |·| ,≥,≤ +,−, col for the vectors are
understood componentwise.
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We note, that the vector δD(f ) satisfy the inequality

δD(f ) ≤ max
(t,x)∈[0,T]×D

|f (t, x)|

and the equality

1
2

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
= max

(t,x)∈[0,T]×D
|f (t, x)|

holds if and only if

max
(t,x)∈[0,T]×D

f (t, x) = − min
(t,x)∈[0,T]×D

f (t, x) = max
(t,x)∈[0,T]×D

|f (t, x)| .
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Assume that the following conditions are satisfied for the BVP (2), (3):

(I) the function f is continuous in the domain [0,T] × D and satisfies
the Lipschitz condition of the form

|f (t,u)− f (t, v)| ≤ K |u− v| , (5)

for all fixed t ∈ [0,T] , {u, v} ∈ D, where K is a constant matrix with
nonnegative components.

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 36
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(II) there exist a nonempty set

∅ 6= Dβ ⊂ D (6)

such that

Dβ :=

{
z ∈ D : B

(
z +

t
T

[
C−1d−

(
C−1A + I

)
z
]
, β

)}
⊂ D (7)

for all t ∈ [0,T] .

It means that the set Dβ contains such points z ∈ D for which the point

z +
t
T

[
C−1d−

(
C−1A + I

)
z
]

belongs to the domain D together with their β neighborhood.
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(III) the spectral radius r(K) of the matrix K satisfy the inequality

r(K) <
10
3T
, (8)

which means that the greatest eigenvalue of the matrix

Q =
3T
10

K (9)

is less then one.
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To study the solution of the BVP (2), (3) let us introduce the parametrized
sequence of vector- functions {xm(t, z, }∞m=0 depending on parameter
z ∈ Dβ :

xm (t, z) := z +

t∫
0

f (s, xm−1 (s, z)) ds− t
T

T∫
0

f (s, xm−1 (s, z)) ds+

+
t
T

[
C−1d− (C−1A + I)z

]
, m = 1, 2, ...., (10)

x0(t, z) = z +
t
T

[
C−1d− (C−1A + I)z

]
. (11)
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It is easy to see that, for all m ≥ 0 and z ∈ Dβ,( moreover z ∈ Rn ) the
functions xm satisfy the linear two-point conditions (3)

Axm (0, z) + Cxm(T, z) = d

and the initial condition
xm (0, z) = z.

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 40
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We now show that the sequence (10) is uniformly convergence with re-
spect to t ∈ [0,T] and establish the relationship between its limit func-
tion and the solution of the original nonlinear BVP (2), (3) .
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Theorem 1 (on the uniform convergence of the
sequence ).

Let the function f : [0,T] × D → Rn on the right hand side of the system of
differential equations (2) and the boundary conditions (3) satisfy conditions
(I)-(III).

Then, for all fixed z ∈ Dβ the following assertions are true :

1. All functions of the sequence (10) are continuously differentiable functions
satisfying the boundary conditions (3):

Axm (0, z) + Cxm(T, z) = d, m = 0, 1, 2, ...
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/ 192



2. The sequence of functions (10) converges uniformly in t ∈ [0,T] as m→∞
to the limit function

x∗ (t, z) = lim
m→∞

xm(t, z).

3. The limit function x∗ satisfies the initial condition

x∗ (0, z) = z

and the boundary condition (3).
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4. For all t ∈ [0,T] the limit function x∗ is a unique continuously differentiable
solution of the integral equation

x(t) = z +

t∫
0

f (s, x (s)) ds− t
T

T∫
0

f (s, x (s)) ds +
t
T

[
C−1d− (C−1A + I)z

]
or of the equivalent Cauchy problem for a modified system of differential equa-
tions

dx
dt

= f (t, x) + ∆(z), x(0) = z, (12)

where ∆ : Dβ → Rn is a mapping given by formula

∆(z) =
1
T

[
C−1d− (C−1A + I)z

]
− 1

T

T∫
0

f (s, x (s)) ds. (13)
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5. For all t ∈ (0,T), the deviation of the limit function x∗ from its mth approx-
imation satisfies the estimate.

|x∗ (t, z)− xm(t, z)| ≤ 10
9
α1(t)Qm(I −Q)−1δD(f ), (14)

where
α1(t) = 2t(1− t

T
) ≤ T

2
,

the matrix Q is given by (9) and vector δD(f ) is defined by (4).
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Proof.

We prove that the sequence of functions (10) is a Cauchy sequence in
the Banach space C([0,T] ,Rn).
First, we show that

xm(t, z) ∈ D for all (t, z) ∈ [0,T]×Dβ and m ≥ 0.

For this we need in the sequence of functions :

αm+1(t) =

(
1− t

T

) t∫
0

αm(s)ds +
t
T

T∫
t

αm(s)ds,m = 0, 1, 2, ..., (15)

α0(t) = 1.

In particular, we have

α1(t) = 2t(1− t
T

). (16)
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Lemma 1 (on the property of the sequence).

Let the sequence of functions {αm}∞m=0 ⊂ C([0,T] ,R) be given by formula
(15).

Then :

(1) The function αm is symmetric with respect to the point T
2 for all m ≥ 0, i.e.,

αm(t) = αm(T − t), t ∈ [0,T]

αm(
T
2
− t) = αm(

T
2

+ t), t ∈
[

0,
T
2

]
.
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(2) Sequence (15) can be represented alternatively as

αm+1(t) =

t∫
0

αm(s)ds +
t
T

T−t∫
t

αm(s)ds =

=
t
T

T−t∫
t

αm(s)ds +

(
1− t

T

) t∫
T−t

αm(s)ds =

=

T−t∫
0

αm(s)ds +

(
1− t

T

) t∫
T−t

αm(s)ds, t ∈ [0,T] .

(3)For any m ≥ 1, αm(0) = αm(T) and αm(t) > 0 for all t ∈ (0,T).
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(4) The maximal value of every αm(t),m ≥ 0, is achived at the point T
2 , namely

max
t∈[0,T]

αm(t) = αm(
T
2

) = Tm · α(T=1)
m

(
1
2

)
,

where α(T=1)
m (t) stands for αm(t) corresponding to T = 1.

α
(T=1)
m (t) = (1− t)

t∫
0

αm(s)ds + t

1∫
t

αm(s)ds,m = 0, 1, 2, ...,

(5) For every m ≥ 1

dαm(t)
dt

.sign(t− T
2

) ≤ 0, t ∈ [0,T] ,

that is, the function αm is increasing on
(
0, T

2

)
and decreasing on

(T
2 ,T

)
.
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Lemma 2 (estimate with integral average ).

For an arbitrary continuous function x : [0,T]→ R, the estimate∣∣∣∣∣∣
t∫

0

x(τ)− 1
T

T∫
0

x(s)ds

 dτ

∣∣∣∣∣∣ ≤ 1
2
α1(t)

[
max

s∈[0,T]
x(s)− min

s∈[0,T]
x(s)

]

is true for all t ∈ [0,T] , where α1 is the function defined by equality (16).
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Lemma 3 (estimate for the functions of the sequence).

The sequence of functions αm,m ≥ 1,given by relation (15) satisfies the in-
equalities

αm+1(t) ≤ 3T
10
αm(t), m ≥ 2;

αm+1(t) ≤ 10
9

(
3T
10

)m

α1(t),m ≥ 0.
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Using these Lemmas from (10) for m = 0 we get the following relation

|x1(t, z)− x0(t, z)| =

∣∣∣∣∣∣
t∫

0

f (τ, x0(τ, z))− 1
T

T∫
0

f (s, x0(s, z))ds

 dτ

∣∣∣∣∣∣ ≤
≤ 1

2
α1(t)

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
≤

≤ α1(t)δD(f ) ≤ T
2
δD(f ) = β. (17)

So we conclude that x1(t, z) ∈ D for t ∈ [0,T] , z ∈ Dβ.

By induction, one can show that all functions , xm(t, z), m = 1, 2, .... also
belong to the set D for (t, z) ∈ [0,T]×Dβ.
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Consider the difference

xm+1(t, z)− xm(t, z) =

t∫
0

[f (s, xm (s, z))− f (s, xm−1 (s, z))] ds−

− t
T

T∫
0

[f (s, xm (s, z))− f (s, xm−1 (s, z))] ds, m = 1, 2, ...

We denote

rm (t, z) = |xm(t, z)− xm−1(t, z)| ,m = 1, 2, ...
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By using the estimates of Lemmas and taking into account the Lipschitz
condition , we find

rm+1(t, z) ≤ K

(1− t
T

) t∫
0

rm (s, z) ds +
t
T

T∫
0

rm (s, z) ds

 . (18)
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Thus by using (17), we obtain

r1 (t, z) ≤ α1(t)δD(f ). (19)

On the base of (18) and (19) , we have

r2 (t, z) ≤ Kα2(t)δD(f ).

By induction, it is possible to to show that

rm+1(t, z) ≤ Kmαm+1(t)

and using the estimate of Lemma 3, we obtain

rm+1(t, z) ≤ 10
9
α1(t)QmδD(f ),m = 1, 2, ... (20)
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By using inequality (20), we consider the difference and obtain the esti-
mate

∣∣xm+j(t, z)− xm(t, z)
∣∣ ≤ j∑

i=1

rm+i(t, z) ≤ 10
9
α1(t)Qm

j−1∑
i=0

QiδD(f ) (21)

≤ 10
9
α1(t)Qm(I −Q)−1δD(f ).
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Hence, inequality (21) enables us conclude that, according to the Cauchy
criterion, the sequence {xm} uniformly converges on the set

[0,T]×Dβ

to a certain limit function x∗.

Since the functions xm satisfy the boundary conditions (3) for arbitrary
values of parameters, x∗ also satisfies these conditions. Passing to the
limit as m → ∞ in relation (10), we conclude that the limit function
satisfies the corresponding integral equation and, hence, is a solution of
the Cauchy problem (12) , where ∆ is the mapping defined by relation
(13).Estimate (14) is a direct corollary of inequality (20).
Theorem is proved.
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Relationship between the limit function and the
solution of the BVP.

Parallel with the system (2), we consider the following equation with
constant perturbation µ in the right-hand side :

dx
dt

= f (t, x) + µ , t ∈ [0T] , µ ∈ Rn, (control parameter) (22)

with the initial conditions
x(0) = z. (23)

We show that, for all fixed z ∈ Dβ the parameter µ can be chosen so that
the solution

x = x(t, z, µ)

of the Cauchy problem (22), (23) will satisfy at the same time the linear
boundary conditions (3).
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Theorem 2 (sufficient and necessary conditions for the
existence of the unique control parameter).

Assume the conditions of Theorem 1 are held. The solution x = x(t, z, µ) of
the initial value problem will satisfy the boundary conditions

Ax(0, z, µ) + Cx(T, z, µ) = d (24)

if and only if

µ = µz =
1
T

[
C−1d− (C−1A + I)z

]
− 1

T

T∫
0

f (s, x∗ (s, z)) ds. (25)

Moreover,
x(t, z, µ) = x∗ (t, z) , (26)

x∗ (t, z) = lim
m→∞

xm(t, z).
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Proof.

Sufficiency follows from Theorem 1. For necessity - indirect method.
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Theorem 3 (connection of the parametrized limit
function x∗ (t, z) to the solution of original two-point
BVP ).

Assume the conditions of Theorem 1.
Then the limit function

x∗ (t, z) = lim
m→∞

xm(t, z)

will be the solution of the original BVP (2) , (3) if and only if when the param-
eter

z = z∗,

where z∗ is a solution of the system of n algebraic equations (determining sys-
tem)

1
T

[
C−1d− (C−1A + I)z

]
− 1

T

T∫
0

f (s, x∗ (s, z)) ds = 0. (27)
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Proof.

It is sufficient to apply Theorem 2. We note that z∗, at the same time, is
an initial value of the solution of the BVP at the point t = 0.
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The following assertion shows that the dertermining system ”catch”
all the initial values of the possible solutions.
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Lemma 4 (on the zero points of the determining
function).

Assume that the conditions of Theorem 1 are satisfied and there exist some
vector z = z∗, satisfying the system of determining equations (27). Then the
non-linear BVP (2),(3) possesses a solution x(·) such that

x(0) = z∗.

Moreover, this solution has the form

x(t) = x∗ (t, z∗) = lim
m→∞

xm(t, z∗), t ∈ [0,T] . (28)

Conversely, if the BVP (2),(3) has a solution x(·),then this solution necessarily
has the form (28) with z∗ = x(0) and the system of determining equations is
satisfied for

z = z∗ = x (0) . (29)
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Proof.

On the base of Theorems above.
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Sufficient conditions for the existence of solutions.

To investigate the solvability of the BVP (2), (3) side by side with the
exact determining system

∆(z) =
1
T

[
C−1d− (C−1A + I)z

]
− 1

T

T∫
0

f (s, x∗ (s, z)) ds = 0, (30)

we introduce an approximate determining system

∆m(z) =
1
T

[
C−1d− (C−1A + I)z

]
− 1

T

T∫
0

f (s, xm (s, z)) ds = 0, (31)

where xm (·, z) is the vector -function defined by sequence (10) in ex-
plicit form.
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Lemma 5 (on the continuity of the exact limit function
with respect to parameter).

We need in the following Lemma.

Assume that the conditions of Theorem 1 are satisfied.
Then the limit function x∗ (·, z) satisfies with respect to second variable the
Lipschitz condition of the form

|x∗ (·, z1)− xm (·, z2)| ≤
[

I +
10
9

K(I −Q)−1α1(t)
]

R |z1 − z2| , (32)

where
R := max

t∈[0,T]

∣∣∣∣I − t
T

(
C−1A + I

)∣∣∣∣ .
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Proof.

From (10) for m = 1

x1 (t, z1)−x1 (t, z2) = (z1 − z2)+(1− t
T

)

t∫
0

[f (s, x0 (s, z1))− f (s, x0 (s, z2))] ds−

− t
T

T∫
t

[f (s, x0 (s, z1))− f (s, x0 (s, z2))] ds+

+
t
T

[(
C−1A + I

)
(z2 − z1)

]
, (33)

where
x0 (t, zi) = zi +

t
T

[
C−1d−

(
C−1A + I

)
zi

]
. (34)
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Using Lipschitz condition and the reprezentations (34), (15)

|x1 (t, z1)− x1 (t, z2)| ≤

≤ R |z1 − z2|+ K

[
(1− t

T
)

t∫
0

|x0 (s, z1)− x0 (s, z2)| ds+

+
t
T

T∫
t

|x0 (s, z1)− x0 (s, z2)| ds

]
≤

≤ R |z1 − z2|+ KR

(1− t
T

)

t∫
0

ds +
t
T

T∫
t

ds

 |z1 − z2| ≤

≤ [R + KRα1(t)] |z1 − z2| .
Similarly we get

|x2 (t, z1)− x2 (t, z2)| ≤
≤
[
R + KRα1(t) + K2Rα2(t)

]
|z1 − z2| .
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By induction , we find

|xm (t, z1)− xm (t, z2)| ≤
[
R + KRα1(t) + K2Rα2(t) + K3Rα3(t) + ...+

+ KmRαm(t)
]
|z1 − z2| . (35)

By using inequality of Lemma 3 and the property of the matrix

Q =
3T
10

K

from (35) we get

|xm (t, z1)− xm (t, z2)| ≤

[
I +

10
9

Kα1(t)
m−1∑
i=0

Qi

]
R |z1 − z2| . (36)
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Passing in inequality (36) to the limit as m→∞, we conclude that

|x∗ (t, z1)− x∗ (t, z2)| ≤
[

I +
10
9

K(I −Q)−1α1(t)
]

R |z1 − z2| .

The Lemma is proved.

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 71
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Lemma 6 (on the continuity of the exact determining
function with respect to parameter).

Assume that the conditions of Theorem 1 are satisfied. Then the function ∆(z)
of the form is defined, continuous in the domain Dβ and for all z1 , z2 ∈ Dβ

the following estimate is true for the deviation of functions

∆(zi) =
1
T

[
C−1d− (C−1A + I)zi

]
−

− 1
T

T∫
0

f (s, x∗ (s, zi)) ds, zi ∈ Dβ, i = 1, 2, (37)

|∆(z1 −∆(z2)| ≤ 1
T

∣∣∣C−1A + I
∣∣∣ |z1 − z2|+

+ K
[

I +
10T
27

K(I −Q)−1
]

R |z1 − z2| . (38)
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Proof.

For all z ∈ Dβ , there exist the limit of the uniformly convergent se-
quence of functions {xm (t, z)}, which is also continuous . Therefore, if
z varies in the domain Dβ , the function ∆ (z) is also continuous and
bounded

∆ (z) ≤
∣∣∣∣ 1T [C−1d− (C−1A + I)z

]∣∣∣∣+ M,

where
|f (t, z)| ≤M, (t, z) ∈ [0,T]×M.
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By using (37), the Lipschitz condition , (38) and taking into account that

T∫
0

α1(t)dt =
T2

3
,

we have
|∆(z1 −∆(z2)| ≤ 1

T

∣∣∣C−1A + I
∣∣∣ |z1 − z2|+

+
1
T

K

T∫
0

[[
I +

10
9

K(I −Q)−1α1(t)
]

R |z1 − z2|
]

dt ≤

≤ 1
T

∣∣∣C−1A + I
∣∣∣ |z1 − z2|+ K

[
I +

10T
27

K(I −Q)−1
]

R |z1 − z2| .
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Lemma 7 (on the difference between the exact and
approximate determining functions).

Assume that the conditions of Theorem 1 are satisfied. Then, for any m ≥ 1,
z ∈ Dβ for the deviation of exact and approximate determining functions
given by (30), (31) we have the estimate

|∆(z)−∆m(z)| ≤ 10T
27

KQm(I −Q)−1δD(f ). (39)
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Proof.

By direct computations, we find

|∆(z)−∆m(z)| ≤

∣∣∣∣∣∣ 1T
T∫

0

f (s, x∗ (s, z)) ds− 1
T

T∫
0

f (s, xm (s, z)) ds

∣∣∣∣∣∣ ≤

≤ 1
T

K

T∫
0

|x∗ (s, z)− xm (s, z)| ds ≤ 1
T

K

T∫
0

10
9
α1(s)Qm(I −Q)−1δD(f )ds ≤

≤ 10T
27

KQm(I −Q)−1δD(f ).
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On the base of equations (30), (31) introduce the mappings

∆ : Rn → Rn, (40)

∆m : Rn → Rn, (41)
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Definition 1 (special ordering).

Let H ⊂ Rn be an arbitrary non-empty set.
For any pair of functions

fj = col
(
fj1(x), ..., fj,3n−q(x)

)
: H→ Rn, j = 1, 2

we write
f1 BH f2 (42)

if and only if there exist a function k : H→ {1, 2, ...,n} such that

f1,k(x) > f2,k(x),

for all x ∈ H, which means that at least one of the components of the vector f1
is greater then the corresponding component of the vector f2.
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Let us introduce the certain bounded open set

Ω ⊂ Dβ. (43)
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Theorem 4 (sufficient existence conditions).

Assume that conditions of Theorem 1 hold and, moreover, one can specify an
m ≥ 1 and a set Ω of form (43) such that on the boundary ∂Ω of domain Ω

|∆m| =

∣∣∣∣∣∣ 1T
[
C−1d− (C−1A + I)z

]
− 1

T

T∫
0

f (s, xm (s, z)) ds

∣∣∣∣∣∣B∂Ω

B∂Ω
10T
27

KQm(I −Q)−1δD(f ) (44)

holds, where

δD(f ) :=
1
2

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
.
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If, in addition, the Brouwer degree of ∆m over Ω with respect to zero satisfies
the inequality

deg(∆m,Ω, 0) 6= 0, (45)

then there exist a value z = z∗ ∈ Ω such that the function

x∗(t) = x∗ (t, z∗) = lim
m→∞

xm(t, z∗)

is a solution of the nonlinear boundary value problem (2), (3) with the initial
value

x∗(0) = z∗ ∈ Ω ⊂ Dβ. (46)

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 81
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Proof.

We show that the vector fields ∆ and ∆m are homotopic. For this in-
troduce a family of vector mappings

P(θ, z) = ∆m(z) + θ [∆(z)−∆m(z)] , z ∈ ∂Ω, θ ∈ [0, 1] . (47)

It is clear that P(θ, z) is continuous on ∂Ω for any θ ∈ [0, 1] .
In addition

P(0, z) = ∆m(z), P(1, z) = ∆(z), for all z ∈ ∂Ω.
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For any z ∈ ∂Ω in view of of (47), we find

|P(θ, z)| = |∆m(z) + θ [∆(z)−∆m(z)]| ≥ |∆m(z)|−|∆(z)−∆m(z)| . (48)

On the other hand, by using the estimate (39) , we arrive at componen-
twise inequalities

|∆(z)−∆m(z)| ≤ 10T
27

KQm(I −Q)−1δD(f ), (49)

whence , in view of relations (44), (48),(49) , we conclude that

|P(θ, z)|B∂Ω 0, θ ∈ [0, 1] .

It means , that transformation (47) is not degenerate and, hence, the
vector fields ∆m and ∆ are homotopic.
By using relation (45) and the property of invariance of the Brouwer
degree under homotopices, we conclude that

deg(∆,Ω, 0) = deg(∆m,Ω, 0) 6= 0.
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The classic topological result (e.g. see Theorem A.2.4 in [13]) guarantees
the existence of a value

z = z∗ ∈ Ω

such that
∆(z∗) = 0,

i.e. z∗ satisfies the system of determining equations.(27) and according
to Theorem 3, we conclude that the function

x∗(t) = x∗ (t, z∗) = lim
m→∞

xm(t, z∗)

is a solution of the BVP (2), (3) with the initial condition

x∗(0) = z∗ ∈ Ω ⊂ Dβ.

The Theorem is proved.
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Necessary conditions for the solvability of the BVP.

Let us find necessary conditions for the solvability of the BVP (2), (3) ,
i.e. conditions necessary for a certain subdomain of the domain Dβ

D0 ⊂ Dβ

to contain a point z = z∗ that determines the initial vale value x∗(0) of
the solution x∗(t) = x∗ (t, z∗) = lim

m→∞
xm(t, z∗) of the BVP under conside-

ration.
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Theorem 5 (necessary conditions for the existence).

Suppose that the BVP (2), (3) satisfies all conditions of Theorem 1.
Then in order the subdomain D0 ⊂ Dβ contain the point z = z∗ that deter-
mines the initial value x∗(0) of the solution x∗(t) = x∗ (t, z∗) = lim

m→∞
xm(t, z∗)

of the BVP (2), (3) at t = 0, it is necessary that for all m and arbitrary z ∈ D0,
the following inequality be satisfied:

|∆m(z)| ≤ sup
z∈D0

{
1
T

∣∣∣C−1A + I
∣∣∣ |z− z|+

+ K
[

I +
10T
27

K(I −Q)−1
]

R |z− z|

}
+

+
10T
27

KQm(I −Q)−1δD(f ), (50)

where R is defined by (32).

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 86
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Proof.

Let the integer m and z ∈ D0 be arbitrary.
Assume that the determining function ∆ (z) of the form (30) vanishies
at the point z = z∗,i.e. ∆ (z∗) = 0.
Let us use estimation (38) of Lemma 6 in the case where

z1 = z, z2 = z∗.

Then it follows from (38) that

|∆ (z)| ≤ 1
T

∣∣∣C−1A + I
∣∣∣ |z− z∗|+K

[
I +

10T
27

K(I −Q)−1
]

R |z− z∗| . (51)

In view of inequality (49), we get

|∆m(z)| ≤ |∆ (z)|+ 10
9
α1(t)Qm(I −Q)−1δD(f ). (52)
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The combination of (52) and (51) gives

|∆m(z)| ≤ 10
9
α1(t)Qm(I −Q)−1δD(f ) +

1
T

∣∣∣C−1A + I
∣∣∣ |z− z∗|+

+ K
[

I +
10T
27

K(I −Q)−1
]

R |z− z∗| (53)

which proves the validity of inequality (50).
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Remark 2.

According to Theorem 5, we can indicate an algorithm for approximate deter-
mination of the initial values x∗(0) = z∗ of a solution of the given BVP.
For this purpose, we represent the set Dβ as a union finitely many subsets Di :

Dβ = ∪N
i=1Di.

In every D, we choose an arbitrary point

zi ∈ Di

and for a certain number m, we calculate successive approximations xm
(
t, zi)

according to (10) and ∆m(zi) according to (31).
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Then according to (50), we eliminate those subsets Di for an arbitrary point of
which the inverse inequality, i.e.

∣∣∣∆m(zi)
∣∣∣ > sup

z∈D0

{
1
T

∣∣∣C−1A + I
∣∣∣ ∣∣∣z− zi

∣∣∣+
+ K

[
I +

10T
27

K(I −Q)−1
]

R
∣∣∣z− zi

∣∣∣}+

+
10T
27

KQm(I −Q)−1δD(f ) (54)

is true, because by virtue of Theorem 5, such subsets cannot contain the point
z∗ that determines the initial value of a solution of the given BVP.
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The other subsets Di form a certain set

Di
m,

which tends as i,m → ∞ to the set D(z∗) determining the initial values of a
solution of the BVP (2), (3).
Any point z̃ ∈ Di

m can be regarded as an approximate value of the point z∗.
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Parametrization for Reduction various
”inconvenient” boundary conditions to the
two-point linear restrictions.

1.Two point boundary conditions with singular matrix :

Ax (0) + Cx(T) = d, A,C ∈ Rn×n, d ∈ Rn, (55)

det C = 0, (56)

C =

[
C11 C12
021 022

]
,

where C11 : p × p,det C11 6= 0; C12 : p × (n− p) ; 021 : (n− p) × p;
022 : (n− p)× (n− p) ;
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Parametrization :

xp+1(T) = λp+1 , xp+2(T) = λp+2 , ..., xn (T) = λn. (57)

New parametrized boundary conditions :

Ax (0) + C1x(T) = d + λ = d (λ) , (58)

where

C1 =

[
C11 C12
021 In−p

]
, det C1 6= 0.

λ = col(0, 0, ..., 0, λp+1 , λp+2 , ..., λn). (59)
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2.Two-point nonlinear boundary conditions:

g (x (0) , x (T)) = 0, g : D×D→ Rn, (60)

Ax(0) + Ix (T) + g (x (0) , x (T)) = Ax(0) + Ix (T) (61)

Parametrization :

z = x(0) = col(x1(0), ..., xn(0)) = col(z1, z2, ..., zn) (62)

λ = x(T) = col(x1(T), ..., xn(T)) = col(λ1, λ2, ..., λn) (63)

Az + λ+ g (z, λ) = d (z, λ) (64)
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Parametrized linear two-point boundary conditions :

Ax(0) + Ix (T) = d (z, λ) = Az + λ+ g (z, λ) (65)

Let us choose
A := 0

Separated boundary conditions :

x(0) = z, (66)

x(T) = d(z, λ) = λ+ g (z, λ) (67)
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3. Three-point non-linear boundary conditions:

g (x (0) , x(t1, )x (T)) = 0, g : D×D×D→ Rn, 0 < t1 < T (68)

Parametrization:

z = x(0) = col(x1(0), ..., xn(0)) = col(z1, z2, ..., zn), (69)

η = x(0) = col(x1(0), ..., xn(0)) = col(η1, η2, ..., ηn) (70)

λ = x(T) = col(x1(T), ..., xn(T)) = col(λ1, λ2, ..., λn) (71)
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Parametrized linear two-point boundary conditions:

Ax (0) + x (T) = d(z, η, λ), (72)

d(z, η, λ) = Az + λ+ g (z, η, λ) (73)

Let us choose
A := 0

Separated boundary conditions :

x(0) = z, (74)

x(T) = d(z, η, λ) = λ+ g (z, η, λ) (75)
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4. Integral boundary conditions of the form:

Ax(0) + Cx(T) +

T∫
0

B(s)x(s)ds = d, det C = 0, (76)

C =

[
C11 C12
021 022

]
,

where C11 : p × p,det C11 6= 0; C12 : p × (n− p) ; 021 : (n− p) × p;
022 : (n− p)× (n− p) ;

Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 98
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Parametrization:

z = x(0) = col(x1(0), ..., xn(0)) = col(z1, z2, ..., zn) (77)

λ =

T∫
0

B(s)x(s)ds = col (λ1, ..., λn) (78)

η = col
(
0, 0, ..., 0, xp+1(T), xp+2(T), ..., xn(T)

)
=

= col(0, 0, ..., 0, ηp+1,ηp+2,..., ηn,) (79)

Parametrized linear two-point boundary conditions:

Ax(0) + C1x(T) = d(λ, η) = d− λ+ η (80)

where

C1 =

[
C11 C12
021 In−p

]
, det C1 6= 0. (81)
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5. Integral boundary conditions of the form:

T∫
0

B(s)x(s)ds = d, (82)

Ax(0) + x(T) +

T∫
0

B(s)x(s)ds = d + Ax(0) + x(T)

Parametrization:

z = x(0) = col(x1(0), ..., xn(0)) = col(z1, z2, ..., zn) (83)

λ =

T∫
0

B(s)x(s)ds = col (λ1, ..., λn) (84)

η = col(x1(T), ..., xn(T)) = col(η1, ..., ηn) (85)
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Parametrized linear two-point boundary conditions:

Ax(0) + x(T) = d + Az + η − λ = d(z, λ, η) (86)

Separated boundary conditions if A = 0 :

x(0) = z (87)

x(T) = d + η − λ = d(λ, η) (88)
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Two-point nonlinear boundary conditions.

Let us consider in more detail the boundary value problem of general
form

dx
dt

= f (t, x) , t ∈ [0,T] (89)

g (x (0) , x (T)) = 0, g ∈ Rn, (90)

where
f : [0,T]×D→ Rn, g : D×D→ Rn

are continuous and D ⊂ Rn is the closure of a bounded domain.
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Let us introduce the following parametrization :

z = x(0) = col(z1, ..., zn),

λ = x(T) = col(λ1, ..., λn). (91)

On the base of (91), instead of nonlinear boundary conditions (90) we
can consider the linear separated two-point condition of form

x(0) = z, x(T) = d(z, λ), (92)

where
d(z, λ) = λ+ g (z, λ) .
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We note that the boundary condition (92) is a special case of two-point
linear non-separated parametrized boundary conditions of form

Ax(0) + Cx(T) = d(z, λ)

with zero matrix A and C = I.
Instead of boundary value problem (89), (90) we shall consider the prob-
lem (89), (92) with linear separated boundary conditions.
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Remark 3.

It is easy to see that the solution of the original boundary value problem (89),
(90) coincide with those solutions of the two-point boundary value problem
(89), (92)) for which the additional conditions (91) are satisfied.
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It is supposed that the following conditions hold:

(I) the function f is continuous in the domain [0,T] × D and satisfies
the Lipschitz condition of the form

|f (t,u)− f (t, v)| ≤ K |u− v| , (93)

for all fixed t ∈ [0,T] , {u, v} ∈ D, where K is a constant matrix with
nonnegative components.
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/ 192



(II) there exist a nonempty set

∅ 6= Dβ ⊂ D (94)

such that

Dβ :=

{
z ∈ D : B

(
z +

t
T

(d (z, λ)− z) , β

)
⊂ D, ∀ λ ∈ D and t ∈ [0,T]

}
(95)

for∀ λ ∈ D and t ∈ [0,T] .
It means that the set Dβ contains such points z ∈ D for which the point

z +
t
T

[
C−1d(z, λ)−

(
C−1A + I

)
z
]

(96)

belongs to the domain D together with their β neighborhood.
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(III) the spectral radius r(K) of the matrix K satisfy the inequality

r(K) <
10
3T
, (97)

which means that the greatest eigenvalue of the matrix

Q =
3T
10

K (98)

is less then one.
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To study the solution of the auxilary two-point boundary value prob-
lem (89), (92) let us introduce the parametrized sequence of functions
{xm (t, z, λ)}∞m=0 depending on parameters

z = x(0) = col(z1, ..., zn),

λ = x(T) = col(λ1, ..., λn).

xm (t, z, λ) := z +

t∫
0

f (s, xm−1 (s, z, λ)) ds−

− t
T

T∫
0

f (s, xm−1 (s, z, λ)) ds +
t
T

[d(z, λ)− z] , m = 1, 2, ..., (99)

where

x0 (t, z, λ) = z +
t
T

[d(z, λ)− z] , d(z, λ) = λ+ g (z, λ) . (100)
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/ 192



Theorem 6 (convergence of the sequence).

The following statements are true.

Assume that the vector-function f satisfies conditions (I)-(III).
Then for all fixed λ ∈ D and z ∈ Dβ :
1.All the members of sequence (166) are continuously differentiable functions
satisfying the parametrized boundary conditions (92) .
2. The sequence of functions (166) converges to a limit function x∗ (t, z, λ)

x∗ (t, z, λ) = lim
m→∞

xm(t, z, λ) (101)

uniformly in t ∈ [0,T] ,
3.The limit function satisfies the parametrized two-point boundary conditions
(92):

x∗ (0, z, λ) = z, x∗ (T, z, λ) = d(z, λ).
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/ 192



4.The limit function x∗ (t, z, λ) is a unique continuously differentiable solution
of the integral equation

x(t) = z +

t∫
0

f (s, x(s))ds−− t
T

T∫
0

f (s, x(s))ds +
t
T

[d(z, λ)− z] , (102)

or of the equivalent Cauchy problem for a modified system of differential equa-
tions

dx
dt

= f (t, x) + ∆(z, λ), x(0) = z (103)

where ∆(z, λ) : Dβ ×D→ Rn is a mapping given by formula

∆(z, λ) =
1
T

[d(z, λ)− z]− 1
T

T∫
0

f (s, x(s))ds. (104)
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5.The following estimate holds.

|x∗ (t, z, λ)− xm (t, z, λ)| 6

6
10
9
α1(t)Qm (I −Q)−1 δD(f ), t ∈ (0,T) . (105)
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Theorem 7 (connection of the parametrized limit
function x∗ (t, z) to the solution of original two-point
BVP ).

Assume the conditions of Theorem 6. Then the function

x∗ (t, z∗, λ∗) = lim
m→∞

xm(t, z∗, λ∗)

is a solution of the original boundary value problem (89),(90) with non-linear
boundary conditions if and only if the pair (z∗, λ∗) satisfies the system of n + n
algebraic equations

∆(z, λ) =
1
T

[d(z, λ)− z]− 1
T

T∫
0

f (s, x∗(s, z, λ))ds = 0, (106)

x∗ (T, z, λ) = λ. (107)
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We note, that it is possible to prove the existence of a solution based
on the properties of a certain approximation xm (t, z, λ) known in the
analytic form by studying the ”approximate determining system”

∆m(z, λ) =
1
T

[d(z, λ)− z]− 1
T

T∫
0

f (s, xm(s, z, λ))ds = 0, (108)

xm (T, z, λ) = λ. (109)
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Definition 2.

For any pair of indices i1 and i2 between 1 and n , i2 ≥ i1, define the
(i2 − i1 + 1)× n dimension matrix

Ji1,i2 := (0i2−i1+1,i1−1,Ii2−i1+1, 02−i1+1,n−i2),

where 0i,j is the zero matrix of dimension i×j, Ik is the unit matrix of dimension
k, 0i = 0i,i.

It is easy to see that the left multiplication of a vector by a matrix Ji1,i2 , in fact,
means the selection of its components with numbers from i1 to i2.
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On the base of equations (106), (107) and (108), (109) introduce the map-
pings

Φ : Rn × Rn → R2n,

Φm : Rn × Rn → R2n,

by setting

Φ(z, λ) =

 ∆(z, λ) = 1
T [d(z, λ)− z]− 1

T

T∫
0

f (s, x∗ (s, z, λ))ds

J1,n (x∗ (T, z, λ)− λ)

 , (110)

Φm(z, λ) =

 ∆m(z, λ) = 1
T [d(z, λ)− z]− 1

T

T∫
0

f (s, xm(s, z, λ))ds

J1,n (xm (T, z, λ)− λ)

 .

(111)
for all z ∈ Dβ, λ ∈ D.
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Definition 3.

Let H ⊂ R2n be an arbitrary non-empty set. For any pair of functions

fj = col
(
fj1(x), ..., fj,3n−q(x)

)
: H→ R2n, j = 1, 2

we write
f1 BH f2 (112)

if and only if there exist a function k : H→ {1, 2, ..., 2n} such that

f1,k(x) > f2,k(x),

for all x ∈ H, which means that at least one of the components of the vector f1
is greater then the corresponding component of the vector f2.
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Let us consider the domain

Ω = D1 × Λ ⊂ R2n (113)

where D1 ⊂ Dβ , Λ ⊂ D are certain bounded open sets.
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Theorem 8 (sufficient existence conditions).

Assume that conditions of Theorem 6 hold and, moreover, one can specify an
m ≥ 1 and a set Ω of form (113) such that on the boundary ∂Ω of domain Ω

|Φm|B∂Ω

( 10T
27 KQm(I −Q)−1δD(f )
5T
9 Qm(I −Q)−1δD(f ),

)
(114)

holds, where

δD(f ) =
1
2

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
.
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If, in addition, the Brouwer degree of Φm over Ω with respect to zero satisfies
the inequality

deg(Φm,Ω, 0) 6= 0, (115)

then there exist a pair (z∗, λ∗) ∈ Ω such that the function

x∗(t) = x∗ (t, z∗, λ∗) = lim
m→∞

xm(t, z∗, λ∗), t ∈ [0,T] (116)

is a solution of the nonlinear boundary value problem (89), (90) with the initial
value

x∗(0) = z∗ ∈ D1 ⊂ Dβ.
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Integral boundary value problems.

We consider the BVP

dx
dt

= f (t, x) , t ∈ [0,T] , (117)

Ax(0) + Cx(T) +

T∫
0

B(s)x(s)ds = d, det C = 0, (118)

where
f : [0,T]×D→ Rn,

D ⊂ Rn is a closed bounded domain,

C =

[
C11 C12
021 022

]
, (119)

C11 : p × p,det C11 6= 0; C12 : p × (n− p) ; 021 : (n− p) × p; 022 :
(n− p)× (n− p) .
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The problem is to find the solution of the system of differential equa-
tions (117) satisfying the integral boundary restrictions (118) in a class
of continuously differentiable vector functions x. [0,T]→ D.
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Parametrization:

z = x(0) = col(x1(0), ..., xn(0)) = col(z1, z2, ..., zn) (120)

λ =

T∫
0

B(s)x(s)ds = col (λ1, ..., λn) (121)

η = col
(
0, 0, ..., 0, xp+1(T), xp+2(T), ..., xn(T)

)
=

col(0, 0, ..., 0, ηp+1,ηp+2,..., ηn,) (122)
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Parametrized linear two-point boundary conditions:

Ax(0) + C1x(T) = d(λ, η) = d− λ+ η (123)

where

C1 =

[
C11 C12
021 In−p

]
, det C1 6= 0. (124)
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/ 192



So, instead of the integral BVP (117), (118) we study an equivalent pa-
rametrized one, containing already linear two-point boundary condi-
tions with nonsingular matrixes:

dx
dt

= f (t, x) , t ∈ [0,T] , (125)

Ax(0) + C1x(T) = d(λ, η) = d− λ+ η (126)
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Remark 4.

The set of solutions of integral BVP (117), (118) coincides with the set of the
solutions of the parametrized problem (125), (126), satisfying additional con-
ditions (120), (121), (122).
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Let us put :

D0 :=


T∫

0

B(s)x(s)ds : x ∈ C ([0,T] ,D)

 . (127)
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It is supposed that the following conditions hold:

(I) the function f is continuous in the domain [0,T] × D and satisfies
the Lipschitz condition of the form

|f (t,u)− f (t, v)| ≤ K |u− v| , (128)

for all fixed t ∈ [0,T] , {u, v} ∈ D, where K is a constant matrix with
nonnegative components.
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(II) there exist a nonempty set

∅ 6= Dβ ⊂ D (129)

such that

Dβ :=

{
z ∈ D : B

(
z +

t
T

[
C−1

1 d
(
λ, η)−

(
C−1

1 A + I
)

z
)]
, β

)
⊂ D

}
,

(130)
for∀ λ ∈ D0, η ∈ D and t ∈ [0,T] ,where

β =
T
2
δD(f ), δD(f ) :=

1
2

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
,

(131)
It means that the set Dβ contains such points z ∈ D for which the point

z +
t
T

[
C−1

1 d
(
λ, η)−

(
C−1

1 A + I
)

z
)]

(132)

belongs to the domain D together with their β neighborhood.
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(III) the spectral radius r(K) of the matrix K satisfy the inequality

r(K) <
10
3T
,

which means that the greatest eigenvalue of the matrix

Q =
3T
10

K (133)

is less then one.
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Let us connect with the parametrized BVP (125), (126) the sequence of
functions

xm (t, z, λ, η) := z+

t∫
0

f (s, xm−1 (t, z, λ, η)) ds− t
T

T∫
0

f (s, xm−1 (t, z, λ, η)) ds+

+
t
T

[
C−1

1 d (λ, η)− (C−1
1 A + I)z

]
, m = 1, 2, ...., (134)

where m = 1, 2,...,

x0(t, z) = z +
t
T

[
C−1

1 d (λ, η)− (C−1
1 A + I)z

]
(135)

and z,λ, η are considered as parameters.
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Theorem 9 (on the uniform convergence of the
sequence ).

Let the function f : [0,T]×D→ Rn on the right hand side of the system of dif-
ferential equations (125) and the boundary conditions (126) satisfy conditions
(I)-(III).
Then, for all fixed z ∈ Dβ, λ ∈ D0, η ∈ D the following assertions are true :
1. All functions of the sequence (134) are continuously differentiable functions
satisfying the parametrized boundary conditions (126):

Axm (0, z, λ, η) + Cxm(T, z, λ, η) = d (λ, η) , m = 0, 1, 2, ...

2.The sequence of functions (134) converges uniformly in t ∈ [0,T] as m→∞
to the limit function

x∗ (t, z, λ, η) = lim
m→∞

xm(t, z, λ, η). (136)

3.The limit function x∗ satisfies the initial condition x∗ (0, z, λ, η) = z and the
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4.For all t ∈ [0,T] the limit function x∗ is a unique continuously differentiable
solution of the integral equation

x(t) = z+

t∫
0

f (s, x (s)) ds− t
T

T∫
0

f (s, x (s)) ds+
t
T

[
C−1

1 d(λ, η)− (C−1
1 A + I)z

]
(137)

or of the equivalent Cauchy problem for a modified system of differential equa-
tions

dx
dt

= f (t, x) + ∆(z, λ, η), x(0) = z, (138)

where ∆ : Dβ ×D0 ×D→ Rn is a mapping given by formula

∆(z, λ, η) =
1
T

[
C−1

1 d (λ, η)− (C−1
1 A + I)z

]
− 1

T

T∫
0

f (s, x (s)) ds. (139)
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5.For all t ∈ (0,T), the deviation of the limit function x∗ from its mth approx-
imation satisfies the estimate.

|x∗ (t, z)− xm(t, z)| ≤ 10
9
α1(t)Qm(I −Q)−1δD(f ), (140)

where
α1(t) = 2t(1− t

T
) ≤ T

2
, Q =

3T
10

K,

δD(f ) :=
1
2

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
.
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Theorem 10 (connection of the parametrized limit
function x∗ (t, z, λ, η) to the solution of the integral
BVP ).

Assume the conditions of Theorem 9.
Then the function

x∗ (t, z∗, λ∗, η∗) = lim
m→∞

xm(t, z∗, λ∗, η∗)

is a solution of the original integral boundary value problem (117),(118) if and
only if the triplet

z∗ = col(z∗1, ..., z
∗
n),

λ∗ = col (λ∗1, ..., λ
∗
n) , (141)

η∗ = col(0, 0, ..., 0, η∗p+1,η
∗
p+2,..., η

∗
n))

satisfy the system of determining algebraic equations
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∆(z, λ, η) :=
1
T

[
C−1

1 d (λ, η)− (C−1
1 A + I)z

]
−

− 1
T

T∫
0

f (s, x∗ (s, z, λ, η)) ds = 0, (142)

V(z, λ, η) :=

T∫
0

B(s)x∗ (s, z, λ, η) ds− λ = 0 (143)

Jp+1,n(x∗ (T, z, λ, η)− η) = 0, (144)
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Althought Theorem 10 gives sufficient and necessary conditions for the
solvability and construction of the solution of the given integral BVP, its
application faces with difficulties due to the fact that the explicit form
of the functions

∆ : Dβ ×D0 ×D→ Rn,

V : Dβ ×D0 ×D→ Rn, (145)

x∗ (·, z, λ, η) = lim
m→∞

xm(·, z, λ, η)

in (142), (143), (144) is usually unknown.
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This complication can be overcome by using the properties of the func-
tion xm(·, z, λ, η) of the form (134) for a fixed m , which will lead one
instead of the exact determining system (142), (143), (144) to the mth
approximate system of determining equations of the form :

∆m(z, λ, η) :=
1
T

[
C−1

1 d (λ, η)− (C−1
1 A + I)z

]
−

− 1
T

T∫
0

f (s, xm (s, z, λ, η)) ds = 0, (146)

V(z, λ, η) :=

T∫
0

B(s)xm (s, z, λ, η) ds− λ = 0 (147)

Jp+1,n(xm (T, z, λ, η)− η) = 0, (148)
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It is important to note that, unlike to system (142),(143),(144) the mth
approximate determining system (146),(147), (148) contains only terms
involving the function xm(·, z, λ, η) and, thus known explicitly.
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On the base of equations (142), (143), (144) and (146),(147), (148) let us
introduce the mappings :

Φ : Rn × Rn × Rn → R3n,

Φm : Rn × Rn × Rn → R3n

by setting for all z, λ, η of form (120), (121), (122) :

Φ(z, λ, η) :=



1
T

[
C−1

1 d (λ, η)− (C−1
1 A + I)z

]
−

− 1
T

T∫
0

f (s, x∗ (s, z, λ, η)) ds

T∫
0

B(s)x∗ (s, z, λ, η) ds− λ

Jp+1,n(x∗ (T, z, λ, η)− η)


(149)
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and

Φm(z, λ, η) :=



1
T

[
C−1

1 d (λ, η)− (C−1
1 A + I)z

]
−

− 1
T

T∫
0

f (s, xm (s, z, λ, η)) ds

T∫
0

B(s)xm (s, z, λ, η) ds− λ

Jp+1,n(xm (T, z, λ, η)− η)


(150)

Let us consider the set

Ω = D1 × Λ1 ×D2. (151)
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Theorem 11.

Assume the conditions of Theorem 9 and moreover, one can specify an m ≥ 1
a set Ω ⊂ R3n of the form (151) such that

|Φm|B∂Ω

 10T
27 KQm(I −Q)−1δD(f )
10
9 B̃Qm(I −Q)−1δD(f )
5T
9 Qm(I −Q)−1δD(f )

 (152)

holds, where ∂Ω is a bound of domain Ω and B̃ :=
∫ T

0 |B(s)|α1(s)ds.
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If, in addition, the Brouwer degree of Φm over Ω with respect to zero satisfies
the inequality

deg(Φm,Ω, 0) 6= 0, (153)

then there exist a triplet (z∗, λ∗, η∗) ∈ Ω such that the function

x∗(t) = x∗ (t, z∗, λ∗, η∗) = lim
m→∞

xm(t, z∗, λ∗, η∗) (154)

is a solution of the given integral BVP with the initial value

x∗(0) = z∗.
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Example of the nonlinear BVP with 3–point
nonlinear boundary conditions.

Consider the system{
dx1
dt = 0.05x2 − 0.005t2 + 0.1 = f1(t, x1, x2),

dx2
dt = −x2

2 + 0.5x1 + 0.01t4 + 0.15t = f2(t, x1, x2),
(155)

where t ∈
[
0, 1

2

]
,

with non–linear three–point boundary conditions{
g1
(
x(0), x(1

4), x(1)
)

:= x1
( 1

2

)
+ x2

2(0)− x1
(1

4

)
− 0.025 = 0,

g2(x(0), x(1
4), x(1)) := x1(0) + x2

( 1
2

)
− x2(0)− 0.025 = 0.

(156)
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It is easy to check that an exact solution of the problem (155), (156) are
the functions {

x∗1 = 0.1t,
x∗2 = 0.1t2.

(157)

Suppose that the boundary–value problem (155), (156) is considered in
the domain

D = {(x1, x2) : |x1| ≤ 0.42, |x2| ≤ 0.4} . (158)
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Boundary conditions (156) can be rewritten in the form

Ax(0) + Cx
(

1
2

)
+ g

(
x (0) , x

(
1
4

)
x
(

1
2

))
= Ax(0) + Cx

(
1
2

)
, (159)

where

A =

(
0 0
1 −1

)
,

C = I,

I =

(
1 0
0 1

)
,

g
(
x (0) , x

( 1
4

)
x
( 1

2

))
= col

(
g1
(
x (0) , x

( 1
4

)
x
( 1

2

))
, g2
(
x (0) , x

( 1
4

)
x
( 1

2

)))
.
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/ 192



Let us replace the values of the components of the solution of the boun-
dary–value problem (155), (156) in the points t = 0, t = 1

4 and t = 1
2 by

parameters z1, z2, η1, η2 and λ1, λ2 :

x(0) = col (x1(0), x2(0)) = col (z1, z2),

x
( 1

4

)
= col

(
x1
(1

4

)
, x2
( 1

4

))
= col (η1, η2),

x
( 1

2

)
= col

(
x1
(1

2

)
, x2
( 1

2

))
= col (λ1, λ2).

(160)

Using (160), the boundary restrictions (159) can be rewritten as

Ax(0) + x
(

1
2

)
= Az + λ− g (z, η, λ) , (161)

where
z = col (z1, z2),
η = col (η1, η2),
λ = col (λ1, λ2).

(162)
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Let us put
d (z, η, λ) := Az + λ− g (z, η, λ) , (163)

where z, η and λ are given by (162).

Using (163), the parametrized boundary conditions (161) can be written
in the form:

Ax (0) + x
(

1
2

)
= d (z, η, λ) . (164)
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It is easy to check that the matrix K from the Lipschitz condition (93) is

K =

(
0 0.05

0.5 1

)
,

and
r (K) < 1.03 <

10
3T
,

when T = 1
2 .

Vector δD (f ) can be chosen as

δD (f ) ≤
(

0.03125
0.515

)
.

One can varify that, for the parametrized boundary–value problem in
this example, all needed conditions are fulfilled. So, we can proceed
with application of the numerical–analytic scheme described above and
thus construct the sequence of approximate solutions.
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The components of the iteration sequence for the boundary–value prob-
lem (155) under the linear parametrized two–point boundary condi-
tions (164) have the form

xm,1(t, z, η, λ) := z1 +

∫ t

0
f1
(
s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)

)
ds−

−2t
∫ 1

2

0
f1
(
s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)

)
ds+

+2t(z2
2 + η1 + 0.025− z1),

(165)
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xm,2(t, z, η, λ) := z2 +

∫ t

0
f2
(
s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)

)
ds−

−2t
∫ 1

2

0
f2
(
s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)

)
)ds+

+2t(0.025− z1),

(166)

where m = 1, 2, 3, . . . ,

x0,1(t, z, η, λ) = z1 + 2t(z2
2 + η1 + 0.025− z1), (167)

x0,2(t, z, η, λ) = z2 + 2t(0.025− z1). (168)
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The system of approximate determining equations depending on the
number of iterations for the given example is

∆m,1(z, η, λ) = −2
∫ 1

2

0
f1
(
s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)

)
ds+

+2(z2
2 + η1 + 0.025− z1) = 0,

(169)

∆m,2(z, η, λ) = −2
∫ 1

2

0
f2
(
s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)

)
ds+

+2(0.025− z1) = 0,
(170)

xm,1

(
1
4
, z, η, λ

)
= η1, xm,2

(
1
4
, z, η, λ

)
= η2, (171)

xm,1

(
1
2
, z, η, λ

)
= λ1, xm,2

(
1
2
, z, η, λ

)
= λ2. (172)
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/ 192



Using (165)–(168) as a result of the first iteration (m = 1), we get:

x11 = z1 − 0.001666666667t3 + 0.00125t2 − 0.05t2z1+
+0.04979166666t− 1.975tz1 + 2tz2

2 + 2tη1,

x12 = z2 + 0.002t5 − 0.0008333333332t3 + 0.06666666666t3z1−
−1.333333333t3z2

1 + 0.5t2z2
2 + 0.5t2η1 + 0.875t2 − 0.5t2z1−

−0.05t2z2 + 2t2z2z1 − 1.766666667tz1 − 0.25tz2
2+

+0.006333333333t + 0.3333333334tz2
1 − 0.25tη1+

+0.025z2t− tz2z1,

for all t ∈
[
0, 1

2

]
.
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The system (169)–(172), as follows from the first iteration above, now
has the form

∆1,1(z, η, λ) := −0.0500263021− 1.975937500z1−
−0.002083333334z2

1 + 2.001041667η1 + 0.004166666666z2z1−
−0.05010416666z2 + 2.001041667z2

2 = 0,
(173)

∆1,2(z, η, λ) := 0.1631250001z2z2
1 − 0.04177083332z2η1−

−0.1471874999z2
2z1 − 0.002083333338z2

1η1 − 000.8333333351z3
1z2+

+0.−−6250000002z2
1z2

2 + 0.0005208333338η2
1 + 0.01989583334η1z1+

+0.001041666668η1z2
2 + 0.00416666667z3

2z1 − 0.04177083332z3
2+

+0.002116402121z4
1 − 0.04257275137z3

1 + 0.0005208333338z4
2+

+0.006258188451 + 0.004166666670η1z2z1 + 0.3158912369z2
1−

−0.9658448663z2z1 − 2.263765001z1 + 0.01775263207z2−
−0.2503388207η1 + 0.7538330543z2

2 = 0,
(174)
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0.503125z1 + 0.01249999999 + 0.5z2
2 + 0.5η1 = η1, (175)

1.003125z2 + 0.007041015625− 0.4718750001z1 + 0.06250000002z2
1−

−0.03125z2
2 − 0.03125η1 − 0.125z2z1 = η2.

(176)
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The computation shows that the approximate solutions of the approxi-
mate determining system (173)–(176) are

z1 := z11 = −1.732102940 · 10−8,
z2 := z12 = −0.000005209304726,

η1 := η11 = 0.02499998258,
η2 := η12 = 0.006254548758,
λ1 := λ11 = 0.0499999826,
λ2 := λ12 = 0.02499480802.
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The first approximation to the first and second components of solution
is

x11 = −1.73210294 · 10−8 − 0.001666666667t3+

+ 0.001250000866t2 + 0.09979166608t,

x12 = −0.000005209304726 + 0.002t5 − 0.0008333344879t3+

+ 0.1000002604t2 + 0.00008323804922t.
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The error of the first approximation is

max
t∈[0, 1

2 ]
|x∗1(t)− x11(t)| ≤ 1.0041 · 10−5,

max
t∈[0, 1

2 ]
|x∗2(t)− x12(t)| ≤ 6, 8 · 10−6.

The error of the second approximation is

max
t∈[0, 1

2 ]
|x∗1(t)− x21(t)| ≤ 4.19 · 10−9,

max
t∈[0, 1

2 ]
|x∗2(t)− x22(t)| ≤ 2 · 10−6.

The error of the third approximation is

max
t∈[0, 1

2 ]
|x∗1(t)− x31(t)| ≤ 1.51 · 10−9,

max
t∈[0, 1

2 ]
|x∗2(t)− x32(t)| ≤ −1.264 · 10−9.
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Application of the integral BVP.

Let us show an application of the numerical–analytic scheme, described
above, for the system of differential equations{

dx1
dt = 0.05x2 + x1x2 − 0.005t2 − 0.01t3 + 0.1 = f1(t, x1, x2),

dx2
dt = 0.5x1 − x2

2 + 0.01t4 + 0.15t = f2(t, x1, x2),
(177)

with two–point integral boundary conditions

Ax(0) +

∫ 1
2

0
B(s)x(s)ds + Cx

(
1
2

)
= d, (178)

where t ∈
[
0, 1

2

]
,

A =

(
0 0
0 1

)
, B(t) =

(
0 t/2

1/2 1/4

)
,

C =

(
1 0
0 0

)
, d =

(
13/256
7/960

)
.
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It is easy to check that the exact solution of the problem (177), (178) is{
x∗1 = 0.1t,
x∗2 = 0.1t2.

Suppose that the boundary–value problem (177), (178) is considered in
the domain

D = {(x1, x2) : |x1| ≤ 0.42, |x2| ≤ 0.4} .
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Let us introduce the following parameters:

z := x(0) = col (x1(0), x2(0)) = col (z1, z2) ,

λ :=
∫ T

0 B(s)x(s)ds = col (λ1, λ2)

η2 := x2
( 1

2

) (179)

Using (179), the boundary restrictions (178) can be rewritten as linear
ones that contain already non–singular matrix C1

Ax(0) + C1x
(

1
2

)
= d(λ, η), (180)

where η = col(0, η2), C1 =

(
1 0
0 1

)
, d(λ, η) := d− λ+ η .
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It is easy to check that the matrix K from the Lipschitz condition (128)
can be taken as

K =

(
0 0.05

0.5 0.8

)
,

and
r (K) < 0.84 <

10
3T
,

when T = 1
2 .

Vector δD (f ) can be chosen as

δD (f ) ≤
(

0.18925
0.3278125

)
.
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Domain Dβ is defined by inequalities:

2t(0.05078125000− λ1 − z1) ≤ 0.0473125,

2t(0.007291666667− λ2 + η2 − 2z2) ≤ 0.081953125,

∀λ1, λ2 ∈ D0, η2 ∈ D.
The domain D0 is such that

D0 = {(λ1, λ2) : |λ1| ≤ 0.105, |λ2| ≤ 0.31} .

One can verify that, for the parametrized boundary–value problem (177),
(180), all needed conditions are fulfilled. So, we can proceed with ap-
plication of the numerical–analytic scheme described above and thus
construct the sequence of approximate solutions.
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The components of the iteration sequence for the boundary–value prob-
lem (177) under the linear parametrized two–point boundary condi-
tions (180) have the form

xm,1(t, z, λ, η) := z1 +

∫ t

0
f1
(
s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)

)
ds−

−2t
∫ 1

2

0
f1
(
s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)

)
ds+

+2t(0.05078125− λ1 − z1),

(181)
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xm,2(t, z, λ, η) := z2 +

∫ t

0
f2
(
s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)

)
ds−

−2t
∫ 1

2

0
f2
(
s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)

)
)ds+

+2t(0.007291666667− λ2 + η2 − 2z2),

(182)

where m = 1, 2, 3, . . . ,

x0,1(t, z, η, λ) = z1 + 2t(0.05078125− λ1 − z1), (183)

x0,2(t, z, η, λ) = z2 + 2t(0.007291666667− λ2 + η2 − 2z2). (184)
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The system of approximate determining equations

∆m(z, λ, η) = col(∆m,1(z, λ, η),∆m,2(z, λ, η))

depending on the number of iterations for the given example is

∆m,1(z, λ, η) = −2
∫ 1

2

0
f1
(
s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)

)
ds+

+2(0.05078125− λ1 − z1) = 0,
(185)

∆m,2(z, λ, η) = −2
∫ 1

2

0
f2
(
s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)

)
ds+

+2(0.007291666667− λ2 + η2 − 2z2) = 0,
(186)

∫ 1
2

0
B(s)xm(s, z, λ, η)ds = λ, (187)

xm,2

(
1
2
, z, λ, η

)
= η2, (188)

m = 1, 2, 3, . . . .
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/ 192



The computation shows that the approximate solutions of the deter-
mining system (185)–(188) for m = 1 are

z1 := z11 = −4.253290711 · 10−7,
z2 := z12 = 7.295492706 · 10−7,
λ1 := λ11 = 0.0007814848293,
λ2 := λ12 = 0.007290937121,
η2 := η12 = 0.0249993271.
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The first approximation to the first and second components of solution
is

x11 = −0.0025t4 + 0.09968792498t− 4.253290711 · 10−7+

+ 0.001249955722t2 − 8.714713042 · 10−8t3,

x12 = 0.00008047566353t + 0.002t5 + 7.295492706 · 10−7+

+ 0.1000000588t2 − 0.0008332398387t3.
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The error of the first approximation is

max
t∈[0, 1

2 ]

∣∣x∗1(t)− x11(t)
∣∣ ≤ 2.1 · 10−5,

max
t∈[0, 1

2 ]
|x∗2(t)− x12(t)| ≤ 2.2 · 10−6.

The error of the second approximation is

max
t∈[0, 1

2 ]

∣∣x∗1(t)− x21(t)
∣∣ ≤ −4.03 · 10−8,

max
t∈[0, 1

2 ]
|x∗2(t)− x22(t)| ≤ 1.2 · 10−6.

Continuing calculations one can get more approximate solutions of the
original boundary–value problem with higher precision.
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/ 192



References I

[1] Bogolyubov, N. N. and Mitropolsky, Yu. A., Asmptotic Methods in
the Theory of nonlinear Oscillations, Fizmatgiz, Moscow, 1963 (in
Russian)

[2] Bogolyubov, N. N., Mitropolsky, Yu. A. and Samoilenko, A.M.,
Method of Accelerated Convergence in Nonlinear Mechanics,
Naukova Dumka, Kiev, 1969, (in Russian)

[3] Mishchenko, E. F. and Rozov, N.,Kh. Differential Equations with
Small Parameter and Relaxation Oscillations, Nauka, Moscow,
1975, (in Russian)

[4] Moser, J. Rapidly convergent method of iterations for nonlinear
differential equations, Usp. Mat. Nauk, 23, Issue 4, (1968), 179-238

[5] Pliss, V.A., Integral Sets of Periodic Systems of Differential Equa-
tions, Nauka, Moscow, 1977, (in Russian)
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Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 171
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/ 192



References VIII
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Miklós Rontó (Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemvárosmatronto@uni-miskolc.hu)Numerical-analytic technique and parametrization for some nonlinear boundary value problems
Universidad Tecnica Federico Santa Maria Valparaiso, September, 9–21, 2013Dedicated to Professor Iván Szantó on the ocassion of his 60th birthday 184
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[73] Rontó M. and Marinets. K., On parametrization for boundary
value problems with three-point non-linear restrictions, Miskolc
Mathematical Notes, vol. 13 , No.1 (2012), 91-106, IF: 0.351
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