UTFSM - Primer semestre 2016

Teoría de Bifurcaciones

Profesor: Pablo Aguirre

TAREA 2

- 1. Sea $f(x,\mu), x \in \mathbb{R}, \mu \in \mathbb{R}$, una familia de difeomorfismos suaves, a un parámetro, para los cuales existe un punto fijo en x=0 para todo μ , es decir, $f(0,\mu)\equiv 0$. Suponga que el valor propio de la linealización de f en $x=0, \lambda(\mu)$ es tal que $\lambda(0)=1$ y $\lambda'(0)=\frac{d\lambda}{d\mu}|_{\mu=0}>0$. Además, suponga que $f_{xx}(0,0)>0$.
 - (a) Escriba una expansión de f en torno a x=0 de la forma $f(x,\mu)=\sum_{j=0}a_j(\mu)x^j$. Pruebe que $a_0(\mu)\equiv 0,\ a_1(\mu)=1+\mu f_{\mu x}(0,0)+O(\mu^2),\ y\ a_2(0)>0.$
 - (b) Use el Teorema de la Función Implícita para demostrar que la ecuación de la variedad de puntos fijos en el espacio (μ, x) , dada por

$$f(x,\mu) - x = 0,$$

posee solución no-trivial $x=x^*(\mu)$ para $\mu\in(-\epsilon,\epsilon),\,\epsilon>0,$ y obtenga que

$$\frac{dx^*}{d\mu}(0) = \frac{-2f_{\mu x}(0,0)}{f_{xx}(0,0)} < 0.$$

- (c) Determine la estabilidad del punto fijo en x=0 para todo $|\mu|$ suficientemente pequeño.
- (d) Determine la estabilidad del punto fijo en $x = x^*(\mu)$ para todo $|\mu|$ suficientemente pequeño.
- (e) Haga un bosquejo del diagrama de bifurcación en el plano (μ, x) .
- 2. Demuestre que el coeficiente c de la forma normal para la bifurcación flip se puede calcular en términos de la segunda iteración del mapeo, esto es:

$$c(0) = -\frac{1}{12} \frac{\partial^3}{\partial x^3} f^2(x) \big|_{(x,\alpha)=(0,0)}.$$

Ayuda: Tome en cuenta que $f_x(0,0) = -1$.

3. Considere el mapeo logístico

$$f(x,\alpha) = \alpha x(1-x),$$

que depende de un único parámetro $\alpha > 0$.

- (a) Demuestre que en $\alpha_1 = 3$ el mapeo exhibe la bifurcación flip, es decir, un punto fijo de f se vuelve inestable, mientras que un ciclo estable de período 2 se bifurca desde este punto para $\alpha > \alpha_1$. Ayuda: Use la fórmula de la pregunta anterior.
- (b) Pruebe que en $\alpha_0 = 1 + \sqrt{8}$ se generan un ciclo estable y otro inestable de período 3 los cuales existen para $\alpha > \alpha_0$.

- 4. Sea $f(\mu, x)$ una familia de difeomorfismos suaves en $x \in \mathbb{R}$ y en el parámetro $\mu \in \mathbb{R}$, satisfaciendo
 - $f(\mu, -x) = -f(\mu, x)$;
 - $f_x(\mu, 0) = \lambda(\mu), \ \lambda(0) = 1, \ y \ \lambda'(0) = \frac{d\lambda}{d\mu}|_{\mu=0} > 0;$
 - $f_{xxx}(0,0) < 0$.
 - (a) Demuestre que, para (μ, x) suficientemente cerca de (0,0) se cumple:

$$f(\mu, x) = \lambda(\mu)x + a_3(\mu)x^3 + O(x^5),$$

donde $a_3(0) < 0$.

- (b) Deduzca que, en alguna vecindad de $(\mu, x) = (0, 0)$:
 - i. f tiene un punto fijo estable en el origen para $\mu < 0$,
 - ii. para $\mu > 0$, f tiene un punto fijo inestable en el origen y dos puntos fijos estables en

$$x_{\pm}^*(\mu) = \pm \left(\frac{6\mu \,\lambda'(0)}{|f_{xxx}(0,0)|}\right)^{1/2} (1 + O(\mu)).$$

- iii. Bosqueje el diagrama de bifurcación para f en el plano (μ, x) .
- 5. Considere el sistema

$$\begin{cases} \dot{x} = xy + ax^3 + bxy^2, \\ \dot{y} = -y + cx^2 + dx^2y. \end{cases}$$

- (a) Encuentre una variedad central del origen en \mathbb{R}^2 con términos hasta tercer orden.
- (b) Determine la estabilidad del origen cuando a+c<0 y a+c>0. Dibuje bosquejos de los respectivos retratos de fase.
- 6. Considere el sistema

$$\begin{cases} \dot{x} = \mu x - x^3, \\ \dot{y} = y + x^4. \end{cases}$$

Demuestre que el sistema tiene una familia de variedades centrales W^c_μ del origen dadas localmente por la gráfica de $y=V(x,\mu)$, donde V es una función C^6 en x si $\mu<\frac{1}{6}$, pero solo es C^4 en x para $\mu<\frac{1}{4}$. Ayuda: Considere una expansión de la forma $V(x,\mu)=\sum_{j=0}a_j(\mu)x^j$, obtenga los coeficientes $a_j(\mu)$, y analice sus denominadores.

7. Considere el sistema

$$\begin{cases} \dot{x} = y - x^3, \\ \dot{y} = \mu y - x^3, \end{cases}$$

donde $\mu \in \mathbb{R}$.

- (a) Encuentre una familia de variedades centrales W^c_μ del origen para $|\mu|$ suficientemente pequeño. Ayuda: Obtenga una representación de W^c_μ como en el problema anterior.
- (b) Determine la estabilidad del origen para cada $|\mu|$ suficientemente pequeño.

8. Considere el mapeo de Hénon

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \left(\begin{array}{c} y \\ \alpha - \beta x - y^2 \end{array}\right)$$

Pruebe que las bifurcaciones fold y flip de sus puntos fijos son no-degeneradas para $\beta \neq \pm 1$.

9. Sea $A(\alpha)$ una matriz real parámetro-dependiente de tamaño $n \times n$ la cual posee un par (simple) de valores propios complejos $\lambda_{1,2}(\alpha) = \mu(\alpha) \pm i\omega(\alpha)$, $\mu(0) = 0$, $\omega(0) > 0$. Pruebe que

$$\mu'(0) = \operatorname{Re}\langle p, A'(0)q \rangle,$$

donde $p, q \in \mathbb{C}^n$ satisfacen

$$A(0)q = i\omega(0)q$$
, $A^{T}(0)p = -i\omega(0)p$, $\langle p, q \rangle = 1$.

10. Considere una familia de sistemas dinámicos continuos en \mathbb{R}^n , dependiendo de un parámetro $\mu \in \mathbb{R}$, que posee una órbita periódica γ_{μ} para cada μ . Sea $P_{\mu}: \Sigma \to \Sigma$ la aplicación de retorno de Poincaré asociada a γ_{μ} , definida en una sección transversal $\Sigma \subset \mathbb{R}^{n-1}$, para $|\mu|$ suficientemente pequeño. Suponga que en $\mu = 0$ el punto fijo de P_{μ} tiene los valores propios $\lambda_1 = 1$ y $0 < \text{Re}(\lambda_j) < 1$ para todo $j = 2, \ldots, n-1$, y por lo tanto, γ_0 es un ciclo no-hiperbólico. Suponga que la restricción de P_{μ} a una variedad central W_{loc}^c 1-dimensional tiene la forma

$$P_{\mu}^{c}: x \mapsto (1+\mu)x - x^{2}, \quad x \in (-\epsilon, \epsilon).$$

- (a) Investigue las bifurcaciones de P_{μ}^{c} para μ suficientemente cerca de $\mu=0.$
- (b) Dibuje el diagrama de bifurcación de P^c_{μ} en el espacio (μ, x) .
- (c) Escriba en forma explícita un sistema discreto (n-1)-dimensional que sea conjugado a la aplicación de retorno de Poincaré P_{μ} .
- (d) En el caso n=3, dibuje los posibles retratos de fase en \mathbb{R}^3 para $\mu<0,\,\mu=0,\,\mathrm{y}\,\,\mu>0.$