Bifurcaciones homoclínicas

Pablo Aguirre

Departamento de Matemática Universidad Técnica Federico Santa María Valparaíso, Chile

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bifurcaciones globales

 $\dot{x} = f(x, \beta), x \in \mathbb{R}^{n}, \beta \in \mathbb{R}, f$ suficientemente suave.

En lo que sigue, asumimos que todos los puntos de equilibrio en nuestro análisis son hiperbólicos.

- Bifurcaciones homoclínicas: Una órbita Γ_0 se dice homoclínica si converge al mismo punto de equilibrio x_0 para $t \to \pm \infty$. Esto implica que $\Gamma_0 \subset W^s(x_0) \cap W^u(x_0)$.
- Bifurcaciones heteroclínicas: Una órbita Γ_0 se dice heteroclínica si converge a un punto x_1 para $t \to -\infty$, y converge a un punto x_2 para $t \to +\infty$, con $x_1 \neq x_2$. Esto implica que $\Gamma_0 \subset W^u(x_1) \cap W^s(x_2)$.

э.

Sabemos que estas intersecciones no-transversales de variedades estables e inestables son estructuralmente inestables. Luego, cualquier perturbación del parámetro β romperá estas concesiones globales.

Bifurcaciones homoclínicas en aplicaciones

- Modelos de dinámica de lásers,

- Propagación de impulsos nerviosos en neuronas y axones,
- Ondas viajeras en EDPs: ej, modelo de FitzHugh-Nagumo con distintas escalas de tiempo (slow-fast dynamics),

- Modelos de sistemas de comunicación basados en caos,
- Reacciones electro químicas y procesos de oxidación;
- Convección electrodinámica en cristales líquidos,
- Cadenas alimenticias en dinámica de poblaciones,
- Convección no-lineal en campos magnéticos,
- Sistemas excitables: Reacción mediante un pulso antes de regresar al estado de reposo.

etc.

Bifurcaciones homoclínicas planares

 $\dot{x} = f(x, \beta), \ \underline{x \in \mathbb{R}^2}, \ \beta \in \mathbb{R}, \ f \ \text{suficientemente suave}.$

- Supongamos que para $\beta = 0$, Γ_0 es una intersección no-transversal de $W^u(x_0)$ y $W^s(x_0)$.
- Al variar el parámetro β y romper el loop homoclínico, se provoca un reacomodo de las variedades invariantes.

¿Qué consecuencias tiene la formación/destrucción de la órbita homoclínica?

- Consideremos una sección unidimensional Σ transversal a W^s(x₀) cerca de x₀.
- Introduzcamos coordenadas locales ξ a lo largo de Σ tales que el punto de intersección de Σ con la variedad estable corresponde a ξ = 0.
- Esta construcción se puede realizar para todos los sistemas suficientemente cercanos al caso β = 0. Sin embargo, para β ≠ 0, la variedad inestable W^u(x₀) no regresa al punto silla. Hay dos posibilidades: Las variedades se separan hacia arriba o hacia abajo.

Denotemos por ξ^u al valor de la coordenada ξ en la intersección de W^u(x₀) con Σ. En particular, si β = 0, ξ^u = 0.

Análisis de la bifurcación homoclínica planar

- Sin pérdida de generalidad, podemos asumir que el punto silla está en el origen para todo |β| suficientemente pequeño.
- Existe un cambio de coordenadas lineal que nos permite expresar el sistema en términos de su base de vectores propios (eigenbase).
- Un cambio de coordenadas adicional nos permite obtener una linealización local de las variedades invariantes W^s(0) y W^u(0).
- Este cambio de coordenadas es suave e invertible en alguna vecindad del origen. Podemos asumir (modulo probablemente un reescalamiento lineal adicional) que esta vecindad contiene al cuadrado unitario Ω.
- Así obtenemos un sistema suave no-lineal en las coordenadas (ξ, η) con una silla hiperbólida en el origen y cuyas variedades invariantes son lineales y coinciden con los ejes coordenadas en Ω.

Aplicación de retorno P

- A continuación introducimos dos secciones transversales cerca del origen: Σ and Π, las cuales son transversales a las variedades estable e inestable del origen, respectivamente.
- Luego, es posible definir una aplicación de retorno de Poincaré P en una semi-sección Σ⁺,
 P: Σ⁺ → Σ, como una composición P = Q ∘ Δ de
 (a) un mapeo (local) cerca-de-la-silla Δ: Σ⁺ → Π,

(b) y un mapeo (global) $\left| \ Q:\Pi
ightarrow \Sigma
ight|$ cerca de la parte global de la órbita homoclínica.

- Notemos que β es la distancia entre las variedades a lo largo de Σ.
- Express Δ and Q in terms of eigenvalues and unfolding parameters.

Aplicación de retorno P (cont.)

Podemos expresar Δ y Q en términos de los valores propios λ₁ < 0, λ₂ > 0, y del parámetro de bifurcación.

El mapeo Δ se puede expresar analíticamente en términos de las nuevas coordenadas (ξ,η) al integrar la

linealización del sistema suficientemente cerca del origen: $\boxed{\Delta: \Sigma^+ \to \Pi, \ \xi(\eta) = \eta^{-\frac{\lambda_1}{\lambda_2}}}$ Por continuidad, asumimos $\xi(0) = 0.$

El mapeo global expresado en términos de ξ y η es diferenciable e invertible y tiene la forma general $Q: \Pi \to \Sigma, \eta(\xi) = \beta + a\xi + O(\xi^2),$ donde a > 0, pues las órbitas no se pueden intersectar.

En rigor, λ_{1,2} = λ_{1,2}(β), a = a(β), pero al final sólo los valores en β = 0 serán relevantes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Puntos fijos del mapeo de Poincaré

Al sustituir en la composición
$$P = Q \circ \Delta$$
, obtenemos:

$$P: \eta \mapsto \beta + a \eta^{-\frac{\lambda_1}{\lambda_2}} + \dots,$$
donde $\beta \approx 0.$

- Es posible analizar los puntos fijos de P para |η| y |β| pequeños.
- (a) Existe un punto fijo positivo para $\beta > 0$ y $\frac{\lambda_1}{\lambda_2} < 1$.
- (b) Existe un punto fijo positivo para $\beta < 0$ y $\frac{\lambda_1}{\lambda_2} > 1$.
- Al estudiar además la estabilidad de estos puntos fijos obtenemos el siguiente teorema...

(日)、

-

Teorema [Andronov-Leontovich]: Bifurcación homoclínica planar

 $\dot{\mathbf{x}} = f(\mathbf{x}, \alpha), \, \mathbf{x} \in \mathbb{R}^2, \, \alpha \in \mathbb{R}.$ Suponga que se cumplen las siguientes condiciones:

- **x**₀ es un punto silla hiperbólico con valores propios $\lambda_1(0) < 0 < \lambda_2(0)$ para $\alpha = 0$.
- Existe una órbita homoclínica Γ₀ cuando α = 0.
- (G) $\sigma := \lambda_1(0) + \lambda_2(0) \neq 0.$
- (T) $\frac{d\beta}{d\alpha}(0) \neq 0$, donde $\beta = \beta(\alpha)$ es la distancia entre las variedades estable e inestable de x_0 como en la página 6. (En particular, $\beta(0) = 0$).

Entonces, un único ciclo límite L_{β} se bifurca para $\beta \neq 0$ (i.e., para $\alpha \neq 0$). Además, el signo de σ determina la "dirección" de la bifurcación y la estabilidad del ciclo bifurcado: si $\sigma < 0, L_{\beta}$ es estable y existe para $\beta > 0$; si $\sigma > 0, L_{\beta}$ es inestable y existe para $\beta < 0$. Periodo de un ciclo como función de β

- A medida que |β| → 0, el ciclo pasa más y más cerca del punto silla y se vuelve más "angular". Un punto en L_β cada vez se demora más en pasar cerca de x₀
- En el límite, $T_{\beta} \rightarrow \infty$ as $|\beta| \rightarrow 0$.
- Notemos que el ciclo límite existe estrictamente a un sólo lado de la bifurcación.

Bifurcaciones homoclínicas en \mathbb{R}^3 : valores propios reales

 $\dot{\mathbf{x}} = f(\mathbf{x}, \alpha), \, \mathbf{x} \in \mathbb{R}^3, \alpha \in \mathbb{R}.$ Suponga que se cumplen las sisguientes condiciones:

- **x**₀ es un punto silla hiperbólico con valores propios $\lambda^{ss} < \lambda^{s} < 0 < \lambda^{u}$ para $\alpha = 0$.
- Los vectores propios asociados son: v^{ss}, v^s y v^u, respectivamente.
- Existe una órbita homoclínica Γ₀ cuando α = 0.
- (G.1) $\sigma = \lambda^s + \lambda^u \neq 0.$
- (G.2) Γ_0 converge a x_0 tangente a v^s (dirección estable débil).
- (G.3) $W^{s}(\mathbf{x}_{0})$ 'se cierra' a lo largo de $W^{ss}(\mathbf{x}_{0})$. (Más detalles en página siguiente).
 - (T) $\frac{d\beta}{d\alpha}(0) \neq 0$ donde $\beta = \beta(\alpha)$ es la distancia entre las variedades estable e inestable de x_0 como en la página 6. (En particular, $\beta(0) = 0$).

Entonces, un único ciclo *L* se bifurca para $\beta \neq 0$ (i.e., para $\alpha \neq 0$). Además, el signo de σ determina la "dirección" de la bifurcación y la estabilidad del ciclo bifurcado: si $\sigma < 0$, *L* es un ciclo estable (como en la figura); si $\sigma > 0$, *L* es un ciclo silla.

Orientabilidad de bifurcaciones homoclínicas

- (G.1) $\sigma = \lambda^s + \lambda^u \neq 0.$
- (G.2) Γ_0 converge a x_0 tangente a v^s (dirección estable débil).
- (G.3) $W^{s}(x_{0})$ 'se cierra' a lo largo de $W^{ss}(x_{0})$. Esto puede ocurrir de dos maneras: $W^{s}(x_{0})$ forma, o bien, un cilindro topológico o una cinta de Möbius.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- (a) bifurcación homoclínica orientable.
- (b) bifurcación homoclínica no-orientable.

Analizando el despliegue de una bifurcación homoclínica en \mathbb{R}^3

El análisis del unfolding o despliegue de una bifurcación homoclínica en \mathbb{R}^3 es similar al caso planar.

- Sin pérdida de generalidad podemos asumir que el punto silla está en el origen. Además, existe un cambio de coordenadas suave e invertible que nos entrega una linealización local de las variedades invariantes de $\mathbf{0}$, y de tal forma que $W^{u}(\mathbf{0})$ coincide (localmente) con el eje x_1 , y $W^{s}(\mathbf{0})$ coincide (localmente) con el plano (x_2, x_3).
- Introducimos secciones Σ (trasnversal a la dirección estable débil, i.e., el eje x_2 en las nuevas coordenadas) y Π (transversal a la dirección inestable, i.e., el eje x_1 en las nuevas coordenadas).

(日) (日) (日) (日) (日) (日) (日) (日)

Definimos un mapeo de Poincaré P : Σ⁺ → Σ, P = Q ∘ Δ, donde Δ : Σ⁺ → Π (mapeo local) Q : Π → Σ (mapeo global).

Despliegue de una bifurcación homoclínica en \mathbb{R}^3

- Δ queda definido "esencialmente" por la parte lineal $Df(\mathbf{0})$ del campo f.
- ▶ $\Delta(\Sigma^+) \subset \Pi$ posee una forma de cuerno con la punta ubicada en Γ₀ para $\beta = 0$ (eje x_1 en el caso general).

- El mapeo global Q mapea este cuerno de regreso al plano {x₂ = ε₂}.
- Si Γ_0 es orientable: $P(\Sigma^+)$ se intersecta con Σ^+ cuando $\beta = 0$.
- Si Γ_0 no-orientable: $P(\Sigma^+)$ se intersecta con Σ^- cuando $\beta = 0$.

Retorno del "cuerno" a la sección Σ

Según el signo de σ y la orientación de la órbita homoclínica, hay varios casos de posición relativa de $P(\Sigma^+)$ con respecto a Σ .

Dado que el mapeo P actúa como una contracción a lo largo del eje x3, el análisis de puntos fijos se reduce al análisis de un mapeo unidimensional de la forma

$$x_1 \mapsto \beta + A x_1^{\frac{\lambda^u}{\lambda^s}} + \cdots,$$

que es similar al caso planar, pero ahora A > 0 (en el caso orientable) y A < 0 (caso no-orientable).

- De esta manera, si σ < 0, el mapeo P es una contracción en Σ⁺ para β > 0 y luego posee un único punto fijo atractor en P(Σ⁺). (Como en la figura). Esto corresponde a un único ciclo estable para β > 0.
- Si σ > 0, el mapeo P contrae a lo largo del eje x₃ y expande a lo largo del "cuerno". Por lo tanto, posee un único punto fijo silla en P(Σ⁺) para β < 0 o β > 0, dependiendo de la orientación de la órbita homoclínica. (Este caso no se muestra en la figura). Esto corresponde a un único ciclo de tipo silla.

Periodo del ciclo

- ▶ Al igual que en el caso planar, $T_{\beta} \rightarrow \infty$ a medida que $\beta \rightarrow 0$.
- El ciclo existe estrictamente a un lado de la bifurcación.
- La órbita periódica bifurcada posee la misma orientación que la órbita homoclínica.

Órbitas periódicas (no)orientables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Consideremos por ejemplo el caso de una órbita periódica Γ de tipo silla.
- Si P : Σ → Σ es el mapeo de retorno de Poincaré, entonces P(q) = q.
- (a) <u>Caso orientable</u>: x y su primer retorno P(x) están en el mismo lado. El punto fijo q posee multiplicadores de Floquet positivos. W^s(Γ) y W^u(Γ) son variedades invariantes orientables.
- (b) <u>Caso no-orientable</u>: x y su primer retorno P(x) están en lados opuestos. Tan sólo al segundo retorno P²(x) volvemos al mismo lado de la partida. El punto fijo q posee multiplicadores de Floquet negativos. W^s(Γ) y W^u(Γ) son variedades invariantes no-orientables.

Bifurcación homoclínica en \mathbb{R}^3 : silla-foco

 $\dot{\mathbf{x}} = f(\mathbf{x}, \alpha), \, \mathbf{x} \in \mathbb{R}^3, \, \alpha \in \mathbb{R}.$ Suponga que se cumplen las siguientes condiciones:

x₀ es un punto <u>silla-foco</u> hiperbólico con valores propios $\lambda_{1,2}^{s} \in \mathbb{C}$, $\lambda^{u} > 0$ para $\alpha = 0$.

• Re
$$\lambda_{1,2}^{s} < 0$$
, Im $\lambda_{1,2}^{s} \neq 0$.

Existe una órbita homoclínica Γ₀ ⊂ W^s(0) ∩ W^u(0) cuando α = 0.

(G)
$$\sigma = \operatorname{Re} \lambda_{1,2}^{s} + \lambda^{u} \neq 0.$$

(T) $\frac{d\beta}{d\alpha}(0) \neq 0$ donde $\beta = \beta(\alpha)$ es la distancia entre las variedades estable e inestable de x_0 como en la página 6. (En particular, $\beta(0) = 0$).

Este caso es más difícil de analizar. Antes de enunciar los resultados principales, estudiemos la dinámica cerca de la órbita homoclínica para $|\beta|$ suficientemente pequeño.

(日) (日) (日) (日) (日) (日) (日) (日)

Mapeo de Poincaré

- Sin pérdida de generalidad podemos asumir que el punto silla está en el origen. Además, existe un cambio de coordenadas suave e invertible que nos entrega una linealización local de las variedades invariantes de 0, y de tal forma que W^u(0) coincide (localmente) con el eje x₁, y W^s(0) coincide (localmente) con el plano (x₂, x₃).
- Introducimos secciones Σ (transversal al flujo en W^s(0), por ej., transversal al eje x₂ en las nuevas coordenadas) y Π (transversal a la dirección inestable, i.e., el eje x₁ en las nuevas coordenadas).
- Definimos un mapeo de Poincaré P : Σ⁺ → Σ, P = Q ∘ Δ, donde Δ : Σ⁺ → Π (mapeo local) Q : Π → Σ (mapeo global).

Análisis del mapeo de Poincaré

La imagen Δ(Σ⁺) de Σ⁺ en Π ya no es más un "cuerno" sino que una "espiral sólida", a veces llamada serpiente de Shilnikov, en honor a L. P. Shilnikov (1934–2011), pionero en el estudio de bifurcaciones homoclínicas.

- El mapeo global Q envía la "serpiente" de vuelta al plano que contiene a Σ.
- ¿Cantidad y estabilidad de puntos fijos de P?

La imagen de la "serpiente" en Σ ($\sigma < 0$)

- Asumamos primero que $\beta = 0$ y consideremos la intersección de la "serpiente" (i.e, $P(\Sigma^+)$) con Σ .
- El origen de la "serpiente" está en la intersección de Γ₀ con Σ. Esto corresponde a un punto fijo de P cuyo tiempo de retorno a Σ es "infinito".
- Dado que la "serpiente" se enrosca infinitas veces en torno a su origen, la intersección de Σ con W^s(0) divide a la "serpiente" en un número infinito de segmentos de espirales superiores e inferiores.
- Denotemos por P(Σ_i), i = 1, 2, ..., a las semi-espirales superiores. (En la figura se muestran las dos primeras, P(Σ₁) y P(Σ₂)).
- Las preimágenes Σ_i de las semi-espirales superiores son bandas horizontales en Σ^+ .
- Dado que σ = Reλ^s_{1,2} + λ^u < 0, la tasa de contracción es mayor que la tasa de expansión en una vecindad del origen. Luego, existe un i₀ > 0 tal que para i = i₀, i₀ + 1, . . ., la intersección Σ_i ∩ P(Σ_i) = Ø (En la figura, i₀ = 2). Por lo tanto, no pueden haber puntos fijos de P en Σ⁺.
- Si hacemos β > 0, el (único) punto fijo correspondiente a Γ₀ es desplazado desde W^s(0) hacia Σ⁺. Dado que P actúa como una contracción en Σ⁺, este punto fijo es estable.

No hay puntos fijos si $\beta < 0$.

Teorema (silla-foco, $\sigma < 0$)

 $\dot{\mathbf{x}} = f(\mathbf{x}, \alpha)$, $\mathbf{x} \in \mathbb{R}^3, \alpha \in \mathbb{R}$. Suponga que se cumplen las siguientes condiciones:

x₀ es un punto <u>silla-foco</u> hiperbólico con valores propios $\lambda_{1,2}^{s} \in \mathbb{C}$, $\lambda^{u} > 0$ para $\alpha = 0$.

• Re
$$\lambda_{1,2}^s < 0$$
, Im $\lambda_{1,2}^s \neq 0$.

Existe una órbita homoclínica Γ₀ ⊂ W^s(0) ∩ W^u(0) cuando α = 0.

(G)
$$\sigma = \operatorname{Re}\lambda_{1,2}^s + \lambda^u < 0$$

(T) $\frac{d\beta}{d\alpha}(0) \neq 0$ donde $\beta = \beta(\alpha)$ es la distancia entre las variedades estable e inestable de x_0 como en la página 6. (En particular, $\beta(0) = 0$).

Entonces, el sistema posee un único ciclo L_{β} en una vecindad U_0 de $\Gamma_0 \cup \mathbf{x}_0$, el cual es estable y existe para todo $\beta > 0$ suficientemente pequeño.

La imagen de la "serpiente" en Σ ($\sigma > 0$)

ν Nuevamente, asumamos primero que $\beta = 0$ y consideremos la intersección de la "serpiente" $P(\Sigma^+)$ con Σ.

El origen de la "serpiente" está en la intersección de Γ₀ con Σ. Esto corresponde a un punto fijo de P cuyo tiempo de retorno a Σ es "infinito".

- Dado que la "serpiente" se enrosca infinitas veces en torno a su origen, la intersección de Σ con W^s(0) divide a la "serpiente" en un número infinito numerable de segmentos de espirales superiores e inferiores.
- Denotemos por P(Σ_i), i = 1, 2, ..., a las semi-espirales superiores. (En la figura se muestran las dos primeras, P(Σ₁) y P(Σ₂)).

Las preimágenes Σ_i de las semi-espirales superiores son bandas horizontales en Σ⁺.

- ▶ Dado que $\sigma = \operatorname{Re}\lambda_{1,2}^s + \lambda^u > 0$, la tasa de expansión es mayor que la tasa de contracción en una vecindad del origen. Luego, existe un $i_0 > 0$ tal que para $i = i_0, i_0 + 1, \ldots$, la intersección $\Sigma_i \cap P(\Sigma_i)$ nunca es vacía y estará formada por dos componentes (En la figura, $i_0 = 2$).
- Cada una de estas intersecciones forma una herradura de Smale.
- Luego, esto nos da un número infinito de puntos fijos de tipo silla en Σ.
- Si hacemos β ≠ 0, el punto fijo correspondiente a Γ₀ es desplazado desde la línea horizontal en Σ. Luego, un número finito de herraduras de Smale "sobrevive". Pero todavía nos dan un número infinito de puntos fijos silla para todo |β| suficientemente pequeño.

Teorema (silla-foco, $\sigma > 0$)

 $\dot{\mathbf{x}} = f(\mathbf{x}, \alpha), \, \mathbf{x} \in \mathbb{R}^3, \, \alpha \in \mathbb{R}.$ Suponga que se cumplen las siguientes condiciones:

- **x**₀ es un punto <u>silla-foco</u> hiperbólico con valores propios $\lambda_{1,2}^s \in \mathbb{C}$, $\lambda^u > 0$ para $\alpha = 0$.
- $\ \mathsf{Re}\lambda_{1,2}^s < 0, \ \mathsf{Im}\lambda_{1,2}^s \neq 0.$
- Existe una órbita homoclínica Γ₀ ⊂ W^s(0) ∩ W^u(0) cuando α = 0.
- (G) $\sigma = \operatorname{Re}\lambda_{1,2}^s + \lambda^u > 0.$
- (T) $\frac{d\beta}{d\alpha}(0) \neq 0$ donde $\beta = \beta(\alpha)$ es la distancia entre las variedades estable e inestable de x_0 como en la página 6. (En particular, $\beta(0) = 0$).

Entonces, el sistema posee un conjunto invariante caótico (*caos de Shilnikov*) en una vecindad de U_0 de $\Gamma_0 \cup x_0$ para $\beta = 0$. El conjunto caótico contiene una cantidad infinita numerable de órbitas periódicas de tipo silla. Para $|\beta| \neq 0$ suficientemente pequeño, la dinámica caótica persiste, y el sistema sigue teniendo una cantidad infinita numerable de órbitas periódicas de tipo silla.

La bifurcación homoclínica de Shilnikov emerge como la bifurcación de codimensión-uno de campos vectoriales más simple capaz de producir caos!

Bifurcaciones adicionales de órbitas periódicas

- (a) $\sigma < 0$: Órbita periódica estable existe a un lado de la bifurcación. No hay bifurcaciones adicionales.
- (b) $\sigma > 0$: Curva de bifurcación "zigzaguea" alrededor de $\beta = 0$.
- El período T_β de los ciclos de esta rama tiende a infinito cuando β → 0, indicando la existencia de una órbita homoclínica en el límite cuando β = 0.

En cada doblez de esta curva ocurre una bifurcación silla-nodo de órbitas periódicas: A medida que β → 0, los ciclos se van creando de a pares, uno estable (línea continua) y uno silla (línea discontinua).

A su vez, los ciclos estables pierden estabilidad en bifurcaciones de duplicación de período. (Así, aparecen infinitos ciclos del doble de período no incluidos en esta rama de curva de bifurcación).

 \blacktriangleright De esta forma, en el límite, cuando eta
ightarrow 0, existe una cantidad infinita numerable de ciclos de tipo silla.

Además, pueden ocurrir bifurcaciones n-homoclínicas para |β| ≠ 0 suficientemente pequeño: Existencia de órbitas homoclínicas que se cierran después de n − 1 "intentos." Por cada una de estas órbitas homoclínicas secundarias uno obtiene el mismo escenario de herraduras y caos que en la bifurcación principal!

Bibliografía

- Yu. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, 2004.
- J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1983.
- Yu. Ilyashenko and W. Li, Nonlocal Bifurcations, Mathematical Surveys and Monographs, vol. 66 American Mathematical Society, Providence, RI, 1999.
- A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbooly of Dynamical Systems, Volume 3, H. Broer, F. Takens and B. Hasselvlath (eds.), Elsevier, 2010, pp. 379-524.
- L. P. Shilnikov, On a new type of bifurcation of multidimensional dynamical systems, Sov. Math. Dokl., 10 (1969), pp. 91–102.
- L. P. Shilnikov, A case of the existence of a countable number of periodic orbits, Sov. Math. Dokl., 6 (1965), 163–166.
- L. P. Shilnikov, A contribution to the problem of the structure of an extended neighborhood of a rough state to a saddle-focus type, Math. USSR-Sb, 10 (1970), 91–102.
- P. Gaspard, R. Kapral and G. Nicolis, Bifurcation phenomena near homoclinic systems: A two-parameter analysis, J. Statist. Phys., 35 (1984), 697–727.
- P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits, J. Statist. Phys., 35 (1984), 645–696.